AHA/ASA Guideline

2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke

A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

Reviewed for evidence-based integrity and endorsed by the American Association of Neurological Surgeons and Congress of Neurological Surgeons

Endorsed by the Society for Academic Emergency Medicine

William J. Powers, MD, FAHA, Chair; Alejandro A. Rabinstein, MD, FAHA, Vice Chair; Teri Ackerson, BSN, RN; Opeolu M. Adeoye, MD, MS, FAHA; Nicholas C. Bambakidis, MD, FAHA; Kyra Becker, MD, FAHA; José Biller, MD, FAHA; Michael Brown, MD, MSc; Bart M. Demaerschalk, MD, MSc, FAHA; Brian Hoh, MD, FAHA; Edward C. Jauch, MD, MS, FAHA; Chelsea S. Kidwell, MD, FAHA; Thabele M. Leslie-Mazwi, MD; Bruce Ovbiagele, MD, MSc, MAS, MBA, FAHA; Phillip A. Scott, MD, MBA, FAHA; Kevin N. Sheth, MD, FAHA; Andrew M. Southerland, MD, MSc; Deborah V. Summers, MSN, RN, FAHA; David L. Tirschwell, MD, MSc, FAHA; on behalf of the American Heart Association Stroke Council

Background and Purpose—The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 guidelines and subsequent updates.

Methods—Members of the writing group were appointed by the American Heart Association Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the American Heart Association conflict of interest policy was maintained. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. The members of the writing group unanimously approved all recommendations except when relations with industry precluded members voting. Prerelease review of the draft guideline was performed by 4 expert peer reviewers and by the members of the Stroke Council's Scientific Statements Oversight

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest

This guideline was approved by the American Heart Association Science Advisory and Coordinating Committee on November 29, 2017, and the American Heart Association Executive Committee on December 11, 2017. A copy of the document is available at http://professional.heart.org/statements by using either "Search for Guidelines & Statements" or the "Browse by Topic" area. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@ wolterskluwer.com

Data Supplement 1 (Evidence Tables) is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STR.0000000000000158/-/DC1. Data Supplement 2 (Literature Search) is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STR.0000000000000158/-/DC2. The American Heart Association requests that this document be cited as follows: Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; on behalf of the American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:eXXX–eXXX. doi: 10.1161/STR.0000000000000158.

The expert peer review of AHA-commissioned documents (eg, scientific statements, clinical practice guidelines, systematic reviews) is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://professional.heart.org/statements. Select the "Guidelines & Statements" drop-down menu, then click "Publication Development."

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the "Copyright Permissions Request Form" appears on the right side of the page.

© 2018 American Heart Association, Inc.

Committee and Stroke Council Leadership Committee. These guidelines use the American College of Cardiology/ American Heart Association 2015 Class of Recommendations and Levels of Evidence and the new American Heart Association guidelines format.

Results—These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings.

Conclusions—These guidelines are based on the best evidence currently available. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke. (Stroke. 2018;49:eXXX-eXXX. DOI: 10.1161/STR.000000000000158.)

Key Words: AHA Scientific Statements ■ secondary prevention ■ stroke ■ therapeutics

New high-quality evidence has produced major changes in the evidence-based treatment of patients with acute ischemic stroke (AIS) since the publication of the most recent "Guidelines for the Early Management of Patients With Acute Ischemic Stroke" in 2013.1 Much of this new evidence has been incorporated into American Heart Association (AHA) focused updates, guidelines, or scientific statements on specific topics relating to the management of patients with AIS since 2013. The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. These guidelines address prehospital care, urgent and emergency evaluation and treatment with intravenous (IV) and intraarterial therapies, and in-hospital management, including secondary prevention measures that are often begun during the initial hospitalization. We have restricted our recommendations to adults and to secondary prevention measures that are appropriately instituted within the first 2 weeks. We have not included recommendations for cerebral venous sinus thrombosis because they were covered in a 2011 scientific statement and there is no new evidence that would change those conclusions.2

An independent evidence review committee was commissioned to perform a systematic review of a limited number of clinical questions identified in conjunction with the writing group, the results of which were considered by the writing group for incorporation into this guideline. The systematic reviews "Accuracy of Prediction Instruments for Diagnosing Large Vessel Occlusion in Individuals With Suspected Stroke: A Systematic Review for the 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke" and "Effect of Dysphagia Screening Strategies on Clinical Outcomes After Stroke: A Systematic Review for the 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke" are published in conjunction with this guideline.

These guidelines use the American College of Cardiology (ACC)/AHA 2015 Class of Recommendations (COR) and Levels of Evidence (LOE) (Table 1) and the new AHA guidelines format. New or revised recommendations that supersede previous guideline recommendations are accompanied by 250-word knowledge bytes and data supplement tables summarizing the key studies supporting the recommendations in place of extensive text. Existing recommendations that are unchanged are reiterated with reference to the previous publication. These previous publications and their abbreviations used in this document are listed in Table 2. When there is no new pertinent evidence, for these unchanged recommendations, no knowledge byte or data supplement is provided. For some unchanged recommendations, there are new pertinent data that support the existing recommendation, and these are provided. Additional abbreviations used in this guideline are listed in Table 3.

Members of the writing group were appointed by the AHA Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the AHA conflict of interest policy was maintained throughout the writing and consensus process. Members were not allowed to participate in discussions or to vote on topics relevant to their relationships with industry. Writing group members accepted topics relevant to their areas of expertise, reviewed the stroke literature with emphasis on publications since the prior guidelines, and drafted recommendations. Draft recommendations and supporting evidence were discussed by the writing group, and the revised recommendations for each topic were reviewed by a designated writing group member. The full writing group then evaluated the complete guidelines. The members of the writing group unanimously approved all recommendations except when relationships with industry precluded members voting. Prerelease review of the draft guideline was performed by 4 expert peer reviewers and by the members of the Stroke Council's Scientific Statements Oversight Committee and Stroke Council Leadership Committee.

Table 1. Applying ACC/AHA Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)

CLASS (STRENGTH) OF RECOMMENDATION

CLASS I (STRONG)

Benefit >>> Risk

Suggested phrases for writing recommendations:

- Is recommended
- Is indicated/useful/effective/beneficial
- Should be performed/administered/other
- Comparative-Effectiveness Phrases†:
 - Treatment/strategy A is recommended/indicated in preference to treatment B
 - Treatment A should be chosen over treatment B

CLASS IIa (MODERATE)

Benefit >> Risk

Suggested phrases for writing recommendations:

- Is reasonable
- Can be useful/effective/beneficial
- Comparative-Effectiveness Phrases†:
 - Treatment/strategy A is probably recommended/indicated in preference to treatment B
 - It is reasonable to choose treatment A over treatment B

CLASS IIb (WEAK)

Benefit ≥ **Risk**

Suggested phrases for writing recommendations:

- May/might be reasonable
- May/might be considered
- Usefulness/effectiveness is unknown/unclear/uncertain or not well established

CLASS III: No Benefit (MODERATE)

CHI (MODERALE)

Suggested phrases for writing recommendations:

- Is not recommended
- Is not indicated/useful/effective/beneficial
- Should not be performed/administered/other

CLASS III: Harm (STRONG)

Risk > Benefit

Benefit = Risk

Suggested phrases for writing recommendations:

- Potentially harmful
- Causes harm
- Associated with excess morbidity/mortality
- Should not be performed/administered/other

LEVEL (QUALITY) OF EVIDENCE‡

LEVEL A

- High-quality evidence‡ from more than 1 RCT
- Meta-analyses of high-quality RCTs
- One or more RCTs corroborated by high-quality registry studies

LEVEL B-R

(Randomized)

- Moderate-quality evidence‡ from 1 or more RCTs
- Meta-analyses of moderate-quality RCTs

LEVEL B-NR

(Nonrandomized)

- Moderate-quality evidence‡ from 1 or more well-designed, well-executed nonrandomized studies, observational studies, or registry studies
- Meta-analyses of such studies

LEVEL C-LD

(Limited Data)

- Randomized or nonrandomized observational or registry studies with limitations of design or execution
- Meta-analyses of such studies
- Physiological or mechanistic studies in human subjects

LEVEL C-EO

(Expert Opinion)

Consensus of expert opinion based on clinical experience

COR and LOE are determined independently (any COR may be paired with any LOE).

A recommendation with LOE C does not imply that the recommendation is weak. Many important clinical questions addressed in guidelines do not lend themselves to clinical trials. Although RCTs are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

- * The outcome or result of the intervention should be specified (an improved clinical outcome or increased diagnostic accuracy or incremental prognostic information).
- † For comparative-effectiveness recommendations (COR I and IIa; LOE A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.
- ‡ The method of assessing quality is evolving, including the application of standardized, widely used, and preferably validated evidence grading tools; and for systematic reviews, the incorporation of an Evidence Review Committee.

COR indicates Class of Recommendation; EO, expert opinion; LD, limited data; LOE, Level of Evidence; NR, nonrandomized; R, randomized; and RCT, randomized controlled trial.

Table 2. Guidelines, Policies, and Statements Relevant to the Management of AIS

Document Title	Publication Year	Abbreviation Used in This Document
"Recommendations for the Implementation of Telemedicine Within Stroke Systems of Care: A Policy Statement From the American Heart Association" ⁵	2009	N/A
"Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association"	2013	2013 AIS Guidelines
"Interactions Within Stroke Systems of Care: A Policy Statement From the American Heart Association/ American Stroke Association" 6	2013	2013 Stroke Systems of Care
"2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines" ⁷	2013	2013 Cholesterol Guidelines
"2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society" ⁸	2014	N/A
"Recommendations for the Management of Cerebral and Cerebellar Infarction With Swelling: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association" 9	2014	2014 Cerebral Edema
"Palliative and End-of-Life Care in Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association" 10	2014	2014 Palliative Care
"Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association"	2014	2014 Secondary Prevention
"Clinical Performance Measures for Adults Hospitalized With Acute Ischemic Stroke: Performance Measures for Healthcare Professionals From the American Heart Association/American Stroke Association" 12	2014	N/A
"Part 15: First Aid: 2015 American Heart Association and American Red Cross Guidelines Update for First Aid" 13	2015	2015 CPR/ECC
"2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association"	2015ericar Heart Association	Ameri2015 Endovascular Stroke Association
"Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association"	2015	2015 IV Alteplase
"Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association" 16	2016	2016 Rehab Guidelines

ACC indicates American College of Cardiology; AHA, American Heart Association; AIS, acute ischemic stroke; CPR, cardiopulmonary resuscitation; ECC, emergency cardiovascular care; HRS, Heart Rhythm Society; IV, intravenous; and N/A, not applicable.

Table 3. Abbreviations in This Guideline

iubio oi A	bbiotiationo in Tino adiaonilo
ACC	American College of Cardiology
AHA	American Heart Association
AIS	Acute ischemic stroke
ARD	Absolute risk difference
ASCVD	Atherosclerotic cardiovascular disease
ASPECTS	Alberta Stroke Program Early Computed Tomography Score
BP	Blood pressure
CEA	Carotid endarterectomy
CeAD	Cervical artery dissection
CI	Confidence interval
CMB	Cerebral microbleed
COR	Class of recommendation
CS	Conscious sedation
СТ	Computed tomography
СТА	Computed tomographic angiography
СТР	Computed tomographic perfusion
DTN	Door-to-needle
DVT	Deep vein thrombosis
DW-MRI	Diffusion-weighted magnetic resonance imaging
ED	Emergency department
EMS	Emergency medical services
EVT	Endovascular therapy
GA	General anesthesia
GWTG	Get With The Guidelines
HB0	Hyperbaric oxygen
HR	Hazard ratio
	(Continued

Table 3. Continued

Table 5. 0	ontinucu
ICH	Intracerebral hemorrhage
IPC	Intermittent pneumatic compression
IV	Intravenous
LDL-C	Low-density lipoprotein cholesterol
LMWH	Low-molecular-weight heparin
LOE	Level of evidence
LV0	Large vessel occlusion
M1	Middle cerebral artery segment 1
M2	Middle cerebral artery segment 2
M3	Middle cerebral artery segment 3
MCA	Middle cerebral artery
MI	Myocardial infarction
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
mRS	Modified Rankin Scale
mTICI	Modified Thrombolysis in Cerebral Infarction
NCCT	Noncontrast computed tomography
NIHSS	National Institutes of Health Stroke Scale
NINDS	National Institute of Neurological Disorders and Stroke
OR	Odds ratio
OSA	Obstructive sleep apnea American
RCT	Randomized clinical trial Association •
RR	Relative risk
rtPA	recombinant tissue-type plasminogen activator
sICH	Symptomatic intracerebral hemorrhage
TIA	Transient ischemic attack
TJC	The Joint Commission
UFH	Unfractionated heparin

(Continued

e6

1. Prehospital Stroke Management and Systems of Care

1.1. Prehospital Systems

1.1. Prehospital Systems	COR	LOE	New, Revised, or Unchanged
Public health leaders, along with medical professionals and others, should design and implement public education programs focused on stroke systems and the need to seek emergency care (by calling 9-1-1) in a rapid manner. These programs should be sustained over time and designed to reach racially/ethnically, age, and sex diverse populations.	1	B-R	Recommendation revised from 2013 Stroke Systems of Care. COR and LOE added.
Early stroke symptom recognition is essential for seeking timely care. Unfo warning signs and risk factors in the United States remains poor. Blacks ar lower stroke awareness than the general population and are at increased r care. 17 These factors may contribute to the disparities in stroke outcomes. public awareness interventions are variably effective by age, sex, and racial stroke education campaigns should be designed in a targeted manner to o	See Tables I and II in online Data Supplement 1.		
2. Activation of the 9-1-1 system by patients or other members of the public is strongly recommended. 9-1-1 dispatchers should make stroke a priority dispatch, and transport times should be minimized.	ı	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Emergency medical services (EMS) use by stroke patients has been independent emergency department (ED) arrival (onset-to-door time \leq 3 hours; adjusted of confidence interval [CI], 1.93–2.08), quicker ED evaluation (more patients with minutes; OR, 1.89; 95% CI, 1.78–2.00), more rapid treatment (more patients \leq 60 minutes; OR, 1.44; 95% CI, 1.28–1.63), and more eligible patients being \leq 2 hours (67% versus 44%; OR, 1.47; 95% CI, 1.33–1.64), by the only \approx 60% Men, blacks, and Hispanics are less likely to use EMS. Thus, persistent efforts 9-1-1 or similar emergency system by patients or other members of the publicate warranted.	See Table I in online Data Supplement 1.		
3. To increase both the number of patients who are treated and the quality of care, educational stroke programs for physicians, hospital personnel, and EMS personnel are recommended.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
On 9-1-1 activation, EMS dispatch and clinical personnel should prioritize the on-scene times, and transport the patient as quickly as possible to the most US-based analysis of EMS response times found that median EMS response 184 179 cases in which EMS provider impression was stroke was 36 minutes minutes). On-scene time (median, 15 minutes) was the largest component noted for patients 65 to 74 years of age, whites, and women and in nonurbal stroke was associated with minimally faster response times (36.0 versus 36.52% of cases were identified by dispatch as stroke.	appropriate hospititime (9-1-1 call to s (interquartile range of this time, and lo n areas. Dispatch c	al. A recent ED arrival) in ge, 28.7–48.0 onger times were designation of	See Table I in online Data Supplement 1.

1.2. EMS Assessment and Management

1.2. EMS Assessment and Management	COR	LOE	New, Revised, or Unchanged
The use of a stroke assessment system by first aid providers, including EMS dispatch personnel, is recommended.	ı	B-NR	Recommendation reworded for clarity from 2015 CPR/ECC. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
EMS personnel should begin the initial management of stroke in the field. Implementation of a stroke protocol to be used by EMS personnel is strongly encouraged.	ı	B-NR	Recommendation revised from 2013 AIS Guidelines.
In 1 study, the positive predictive value for a hospital discharge diagnosis of stroke/transient ischemic attack (TIA) among 900 cases for which EMS dispatch suspected stroke was 51% (95% CI, 47–54), and the positive predictive value for ambulance personnel impression of stroke was 58% (95% CI, 52–64). ²¹ In another study of 21 760 dispatches for stroke, the positive predictive value of the dispatch stroke/TIA symptoms identification was 34.3% (95% CI, 33.7–35.0), and the sensitivity was 64.0% (95% CI, 63.0–64.9). ²² In both cases, use of a prehospital stroke scale improved stroke identification, but better stroke identification tools are needed in the prehospital setting.			See Table III in online Data Supplement 1.

1.2. EMS Assessment and Management (Continued)	COR	LOE	New, Revised, or Unchanged
 EMS personnel should provide prehospital notification to the receiving hospital that a suspected stroke patient is en route so that the appropriate hospital resources may be mobilized before patient arrival. 	I	B-NR	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
In the Get With The Guidelines (GWTG) registry, EMS personnel provided prearr for 67% of transported stroke patients. EMS prenotification was associated w treatment within 3 hours (82.8% versus 79.2%), shorter door-to-imaging tim DTN times (78 versus 80 minutes), and shorter symptom onset-to-needle times.	See Table I in online Data Supplement 1.		

1.3. EMS Systems

1.3. EMS Systems	COR	LOE	New, Revised, or Unchanged
1. EMS leaders, in coordination with local, regional, and state agencies and in consultation with medical authorities and local experts, should develop triage paradigms and protocols to ensure that patients with a known or suspected stroke are rapidly identified and assessed by use of a validated and standardized instrument for stroke screening, such as the FAST (face, arm, speech test) scale, Los Angeles Prehospital Stroke Screen, or Cincinnati Prehospital Stroke Scale.	-	B-NR	Recommendation reworded for clarity from 2013 Stroke Systems of Care. Class and LOE added to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
		,	See Table IV in online Data Supplement 1.
2. Regional systems of stroke care should be developed. These should consist of the following: (a) Healthcare facilities that provide initial emergency care, including administration of IV alteplase, and, (b) Centers capable of performing endovascular stroke treatment with comprehensive periprocedural care to which rapid transport can be arranged when appropriate.	ı	А	Recommendation reworded for clarity from 2015 Endovascular. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording. Association
3. Patients with a positive stroke screen and/or a strong suspicion of stroke should be transported rapidly to the closest healthcare facilities that can capably administer IV alteplase.	ı	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. See Table LXXXIII in online Data Supplement 1 for original wording.
The 2013 recommendation referred to initial emergency care as described el specified administration of IV alteplase as part of this care. The current recombut reworded to make this clear.			
4. When several IV alteplase-capable hospital options exist within a defined geographic region, the benefit of bypassing the closest to bring the patient to one that offers a higher level of stroke care, including mechanical thrombectomy, is uncertain. Further research is needed.	llb	B-NR	New recommendation.
At least 6 stroke severity scales targeted at recognition of large vessel occlus to facilitate transfer to endovascular centers have been published. ^{24–29} The pe based on published literature was recently compared. ³ All the scales were iniconfirmed stroke cases or selected prehospital cases, and there has been on in the prehospital setting. For prehospital patients with suspected LVO by a stifeline Severity—based Stroke Triage Algorithm for EMS ³⁰ recommends directory stroke center if the travel time to the comprehensive stroke center is <15 and the travel time to the closest primary stroke center or acute stroke-ready hose is insufficient evidence to recommend 1 scale over the other or a specific through which bypass of a primary stroke center or acute stroke-ready hospital is justically sto IV alteplase on outcomes, ³¹ the known impact of delays to mechanical the anticipated delays in transport for mechanical thrombectomy in eligit nonendovascular center, the Mission: Lifeline algorithm may be a reasonable Customization of the guideline to optimize patient outcomes will be needed to factors, including the availability of endovascular centers, door in—door out ti centers, interhospital transport times, and DTN and door-to-puncture times. It regional quality review, including EMS agencies and hospitals, is recommend	See Table V in online Data Supplement 1.		

Stroke

1.4. Hospital Stroke Capabilities

1.4. Hospital Stroke Capabilities	COR	LOE	New, Revised, or Unchanged
Certification of stroke centers by an independent external body, such as Center for Improvement in Healthcare Quality, Det Norske Veritas, Healthcare Facilities Accreditation Program, and The Joint Commission (TJC),* or a state health department, is recommended. Additional medical centers should seek such certification. *AHA has a cobranded, revenue-generating stroke certification with TJC.	ı	B-NR	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Data support the development of stroke centers to improve patient care and of quality of care are associated with differences in certifying organization. Betwee 477 297 AIS admissions from 977 certified primary stroke centers (73.8% TJC Healthcare Facilities Accreditation Program, and 21.3% state based) participal Composite care quality was generally similar among the 4 groups of hospitals stroke centers underperformed TJC-certified primary stroke centers in a few buse were higher in TJC and Det Norske Veritas (9.0% and 9.8%) and lower in Accreditation Program-certified hospitals (7.1% and 5.9%) (P<0.0001). DTN till Healthcare Facilities Accreditation Program hospitals. State primary stroke centers adjusted mortality (OR, 1.23; 95% CI, 1.07–1.41) compared with TJC-certified	een 2010 and 201; c, 3.7% Det Norske ting in GWTG-Strok , although state-ce key measures. The state- and Healtho imes were significanters had higher in-	2, an analysis of e Veritas, 1.2% the was conducted. rtified primary rates of alteplase are Facilities antly longer in -hospital risk-	See Table VI in online Data Supplement 1.

1.5. Hospital Stroke Teams

1.5. Hospital Stroke Teams	COR	LOE	New, Revised, or Unchanged
An organized protocol for the emergency evaluation of patients with suspected stroke is recommended.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. It is recommended that DTN time goals be established. A primary goal of achieving DTN times within 60 minutes in ≥50% of AIS patients treated with IV alteplase should be established.	I	B-NR	Recommendation revised from 2013 AIS Guidelines. American American
In GWTG-Stroke hospitals, median DTN time for alteplase administration decrease, 60–98 minutes) during the 2003 to 2009 preintervention period to 651–87 minutes) during the 2010 to 2013 postintervention period (P <0.001). To patients having DTN times of \leq 60 minutes increased from 26.5% (95% CI, 40.8–41.7) (P <0.001). Comparing the quarter immediately before the interver postintervention quarter (quarter 3 of 2013) showed that DTN times of \leq 60 m CI, 27.8–31.5) to 53.3% (95% CI, 51.5–55.2) (P <0.001). In a subsequent stu from 2014 to 2015, 59.3% of patients received IV alteplase within a DTN time	See Table VII in online Data Supplement 1.		
3. It may be reasonable to establish a secondary DTN time goal of achieving DTN times within 45 minutes in ≥50% of patients with AIS who were treated with IV alteplase.	llb	C-EO	New recommendation.
In a cohort of 888 GWTG-Stroke hospitals surveyed between June 2014 and ischemic stroke were treated with IV alteplase within 4.5 hours of symptom of time was 56 minutes (interquartile range, 42–75 minutes), with 30.4% treated arrival. 36 This recommendation mirrors Target: Stroke phase II objectives. 37	See Table VII in online Data Supplement 1.		
Designation of an acute stroke team that includes physicians, nurses, and laboratory/radiology personnel is recommended. Patients with stroke should have a careful clinical assessment, including neurological examination.	I	B-NR	Recommendation wording modified from 2013 AIS Guidelines to match Class I stratifications. Class unchanged. LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
Multicomponent quality improvement initiatives, which include ED education and multidisciplinary teams with access to neurological expertise, are recommended to safely increase IV thrombolytic treatment.	ı	A	New recommendation.
Multicomponent quality improvement programs to improve stroke care have detailed alteriase use in the community hospital setting. The US cluster-randomized I Treatment Through Interventional Change Tactics) demonstrated increased rate patients. In the intervention group hospitals, alterlase use increased from 59 of 191 of 7288 (2.62%) after intervention. This compared favorably with the chang 65 of 5957 (1.09%) to 120 of 6989 (1.72%), with a relative risk (RR) of 1.68 (95 was also demonstrated with symptomatic intracranial hemorrhage (within 36 hostrokes. In the PRACTISE trial (Penumbra and Recanalisation Acute Computed Evaluation), a multilevel intervention was conducted in a sample of 12 Dutch hospitals treated 393 patients with acute stroke) versus 308 (12.2%) at control hospitals (adjusted OR	See Tables VIII and IX in online Data Supplement 1.		

1.6. Telemedicine

1.6. Telemedicine	COR	LOE	New, Revised, or Unchanged
For sites without in-house imaging interpretation expertise, teleradiology systems approved by the US Food and Drug Administration are recommended for timely review of brain imaging in patients with suspected acute stroke.	ı	A	Recommendation revised from 2013 AIS Guidelines.
2. When implemented within a telestroke network, teleradiology systems approved by the US Food and Drug Administration are useful in supporting rapid imaging interpretation in time for IV alteplase administration decision making.	I	A	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE revised. See Table LXXXIII in online Data Supplement 1 for original wording.
Studies of teleradiology to read brain imaging in acute stroke have successful between telestroke neurologists, radiologists, and neuroradiologists over the contraindications to IV alteplase; and reliability of telestroke radiological evaluations.	presence or abser		See Table X in online Data Supplement 1.
3. Because of the limited distribution and availability of neurological, neurosurgical, and radiological expertise, the use of telemedicine/ telestroke resources and systems can be beneficial and should be supported by healthcare institutions, governments, payers, and vendors as one method to ensure adequate 24/7 coverage and care of acute stroke patients in a variety of settings.	lla	C-EO	Recommendation wording modified from 2013 Stroke Systems of Care to match Class Ila stratifications. COR and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
4. Telestroke/teleradiology evaluations of AIS patients can be effective for correct IV alteplase eligibility decision making.	lla	B-R	New recommendation.
The STRokEDOC (Stroke Team Remote Evaluation Using a Digital Observation the hypothesis that telemedicine consultations, which included teleradiology, resulted in statistically significantly more accurate IV alteplase eligibility decisymptoms and signs of an acute stroke syndrome in EDs. ⁴⁶	See Table XI in online Data Supplement 1.		
5. Administration of IV alteplase guided by telestroke consultation for patients with AIS may be as safe and as beneficial as that of stroke centers.	IIb	B-NR	New recommendation. American American Heart Stroke Association Association
A systematic review and meta-analysis was performed to evaluate the safety delivered through telestroke networks in patients with AIS. Symptomatic intra were similar between patients subjected to telemedicine-guided IV alteplase at stroke centers. There was no difference in mortality or in functional indepertelestroke-guided and stroke center—managed patients. The findings indicate telestroke networks is safe and effective in the 3-hour time window. ⁴⁷	See Table XII in online Data Supplement 1.		
6. Providing alteplase decision-making support via telephone consultation to community physicians is feasible and safe and may be considered when a hospital has access to neither an in-person stroke team nor a telestroke system.	IIb	C-LD	New recommendation.
The advantages of telephone consultations for patients with acute stroke synuse, simplicity, availability, portability, short consultation time, and facile imp	See Table XIII in online Data Supplement 1.		
7. Telestroke networks may be reasonable for triaging patients with AIS who may be eligible for interfacility transfer in order to be considered for acute mechanical thrombectomy.	IIb	B-NR	New recommendation.
An observational study compared clinical outcomes of endovascular treatr anterior circulation stroke transferred after teleconsultation and those direcenter. The study evaluated 151 patients who underwent emergency EVT these, 48 patients (31.8%) were transferred after teleconsultation, and 10 through an ED. Transferred patients were younger, received IV alteplase n time from stroke onset to EVT initiation, and tended to have lower rates of hemorrhage and mortality than directly admitted patients. Similar rates of functional outcomes were observed in patients treated by telestroke and t Telestroke networks may enable the triage and the delivery of EVT to sele transferred from remote hospitals. ⁴⁹	See Table XII in online Data Supplement 1.		

1.7. Organization and Integration of Components

1.7. Organization and Integration of Components	COR	LOE	New, Revised, or Unchanged	
It may be useful for primary stroke centers and other healthcare facilities that provide initial emergency care, including administration of IV alteplase, to develop the capability of performing emergency noninvasive intracranial vascular imaging to most appropriately select patients for transfer for endovascular intervention and to reduce the time to EVT.	llb	C-LD	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.	
(CTA) increased from 3.8% to 9.1% (P <0.0001). CT perfusion (CTP) increase same period (P <0.0001). Reperfusion treatment was more common among to (13.0%) and CTP (17.6%) compared with those with CT of the head alone (4.	Between 2006 and 2010, the proportion of ischemic strokes undergoing computed tomography (CT) angiography (CTA) increased from 3.8% to 9.1% (P <0.0001). CT perfusion (CTP) increased from 0.05% to 2.9% over the same period (P <0.0001). Reperfusion treatment was more common among those who were imaged with CTA (13.0%) and CTP (17.6%) compared with those with CT of the head alone (4.0%; P <0.0001). However, when considering implementation of multimodal CT imaging at small or remote access hospitals, resource availability			
2. Mechanical thrombectomy requires the patient to be at an experienced stroke center with rapid access to cerebral angiography, qualified neurointerventionalists, and a comprehensive periprocedural care team. Systems should be designed, executed, and monitored to emphasize expeditious assessment and treatment. Outcomes for all patients should be tracked. Facilities are encouraged to define criteria that can be used to credential individuals who can perform safe and timely intra-arterial revascularization procedures.	ı	С-ЕО	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.	
3. All hospitals caring for stroke patients within a stroke system of care should develop, adopt, and adhere to care protocols that reflect current care guidelines as established by national and international professional organizations and state and federal agencies and laws.	1	C-EO	Recommendation unchanged from 2013 Stroke Systems of Care. COR and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.	
4. Different services within a hospital that may be transferring patients through a continuum of care, as well as different hospitals that may be transferring patients to other facilities, should establish hand-off and transfer protocols and procedures that ensure safe and efficient patient care within and between facilities. Protocols for interhospital transfer of patients should be established and approved beforehand so that efficient patient transfers can be accomplished at all hours of the day and night.	ı	C-EO	Recommendation unchanged from 2013 Stroke Systems of Care. COR and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.	
5. It may be beneficial for government agencies and third-party payers to develop and implement reimbursement schedules for patients with acute stroke that reflect the demanding care and expertise that such patients require to achieve an optimal outcome, regardless of whether they receive a specific medication or procedure.	llb	C-E0	Recommendation revised from 2013 Stroke Systems of Care.	
Multiple studies evaluating fibrinolytic therapy and mechanical thrombectom have demonstrated substantial cost-effectiveness of acute stroke treatment mechanical thrombectomy era data demonstrate that, in the United States, c million would be realized if the proportion of all ischemic stroke patients rece 8%. This excludes any gain from increased quality-adjusted life-years gained economic and patient value. Before the implementation of Centers for Medic related group 559 payment in 2005, treatment of acute stroke was economic level because of a high hospital cost-reimbursement ratio. Diagnosis-related cost-reimbursement ratio for stroke care. In a single-hospital study, this ratio 0.98–2.28) before diagnosis-related group 559 to 0.82 (95% CI, 0.66–0.97) The subsequent years corresponded to a period of rapid growth in the numbin increasing total stroke treatment cases. Addressing emerging economic barracute stroke care complexity evolves. 51–56				

1.8. Establishment of Data Repositories

1.8. Establishment of Data Repositories	COR	LOE	New, Revised, or Unchanged
Participation in a stroke data repository is recommended to promote consistent adherence to current treatment guidelines, to allow continuous quality improvement, and to improve patient outcomes.	-	B-NR	New recommendation.
In GWTG-Stroke hospitals, participation in a stroke data repository as 1 part of a quality improvement process was associated with improved timeliness of IV alteplase administration after AIS, lower in-hospital mortality and intracranial hemorrhage rates, and an increase in the percentage of patients discharged home. 35,57			See Table XIV in online Data Supplement 1.

1.9. Stroke System Care Quality Improvement Process

1.9. Stroke System Care Quality Improvement Process	COR	LOE	New, Revised, or Unchanged
Healthcare institutions should organize a multidisciplinary quality improvement committee to review and monitor stroke care quality benchmarks, indicators, evidence-based practices, and outcomes. The formation of a clinical process improvement team and the establishment of a stroke care data bank are helpful for such quality of care assurances. The data repository can be used to identify the gaps or disparities in quality stroke care. Once the gaps have been identified, specific interventions can be initiated to address these gaps or disparities.	ı	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
In GWTG-Stroke hospitals, a multidisciplinary quality improvement committee, as 1 part of a quality improvement process, was associated with improved timeliness of IV alteplase administration after AIS, lower in-hospital mortality and intracranial hemorrhage rates, and an increase in the percentage of patients discharged home. dentification of stroke treatment barriers with targeted interventions has demonstrated benefit in improving stroke treatment in community hospitals.			See Tables VIII and IX in online Data Supplement 1.
Continuous quality improvement processes, implemented by each major element of a stroke system of care and the system as a whole, can be useful in improving patient care or outcomes. IIa B-NR		Recommendation revised from 2013 Stroke Systems of Care. Class and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.	
Stroke outcome measures should include adjustments for baseline severity.	ı	B-NR	Recommendation revised from 2013 Stroke Systems of Care. Class and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
Data indicate continuous quality improvement efforts along the stroke spectrum of care, from initial patient identification to EMS activation, ED evaluation, stroke team activation, and poststroke care, can be useful in improving outcomes. S5,38,57 Stroke outcome measures are strongly influenced by baseline stroke severity as measured by the National Institutes of Health Stroke Scale (NIHSS). S6-61 Other identified predictors of poor outcomes include age, blood glucose, and infarct on imaging. Quality improvement efforts should recognize these predictors in order to have meaningful comparisons between stroke care systems.			See Tables VIII, IX, and XIV in online Data Supplement 1.

2. Emergency Evaluation and Treatment

2.1. Stroke Scales

2.1. Stroke Scales	COR	LOE	New, Revised, or Unchanged
The use of a stroke severity rating scale, preferably the NIHSS, is recommended.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Formal stroke scores or scales such as the NIHSS (Table 4) may be performed rapidly, have demonstrated utility, and may be administered by a broad spectrum of healthcare providers with accuracy and reliability. ^{63,64} Use of a standardized scale quantifies the degree of neurological deficit, facilitates communication, helps identify patients for thrombolytic or mechanical intervention, allows objective measurement of changing clinical status, and identifies those at higher risk for complications such as intracerebral hemorrhage (ICH). ^{59-61,65}			See Table III in online Data Supplement 1.

Table 4. National Institutes of Health Stroke Scale

Tested Item	Title	Responses and Scores
1A	Level of consciousness	0—Alert
IA.	Level of consciousness	1—Drowsy
		2—Obtunded
		3—Coma/unresponsive
1B	Orientation questions (2)	0—Answers both correctly
15	Onontation quositons (2)	1—Answers 1 correctly
		2—Answers neither correctly
1C	Response to commands (2)	0—Performs both tasks correctly
10	riesponse to commands (2)	1—Performs 1 task correctly
		2—Performs neither
2	Gaze	0—Normal horizontal movements
2	uaze	1—Partial gaze palsy
		2—Complete gaze palsy
3	Visual fields	0—No visual field defect
3	visuai neius	1—Partial hemianopia
		2—Complete hemianopia
		3—Bilateral hemianopia
4	Facial movement	0—Normal
4	raciai movement	1—Minor facial weakness
		2—Partial facial weakness
5	Mater function (arm)	3—Complete unilateral palsy American American O—No drift Heart Stroke
5	Motor function (arm)	0—No drift Heart Stroke Association Association 1—Drift before 10 s
	a. Left	2—Falls before 10 s
	b. Right	
		3—No effort against gravity
	Mater fraction (left)	4—No movement
6	Motor function (leg)	0—No drift
	a. Left	1—Drift before 5 s 2—Falls before 5 s
	b. Right	
		3—No effort against gravity
7	Limb atovia	4—No movement 0—No ataxia
1	Limb ataxia	1—Ataxia in 1 limb
0	0	2—Ataxia in 2 limbs
8	Sensory	0—No sensory loss
		1—Mild sensory loss
0		2—Severe sensory loss
9	Language	0—Normal
		1—Mild aphasia
		2—Severe aphasia
10	A P. 1 P.	3—Mute or global aphasia
10	Articulation	0—Normal
		1—Mild dysarthria
		2—Severe dysarthria
11	Extinction or inattention	0—Absent
		1—Mild loss (1 sensory modality lost)
		2—Severe loss (2 modalities lost)

Adapted from Lyden et al. 62 Copyright © 1994, American Heart Association, Inc.

2.2. Brain Imaging

.2. Brain Imaging			
2.2. Brain Imaging	COR	LOE	New, Revised, or Unchanged
All patients admitted to hospital with suspected acute stroke should receive brain imaging evaluation on arrival to hospital. In most cases, noncontrast CT (NCCT) will provide the necessary information to make decisions about acute management.	ı	B-NR	Recommendation revised from 2013 AIS Guidelines.
Diagnostic testing is most cost-effective when it leads to a change in treatment a change in treatment. Although diffusion-weighted magnetic resonance imagin CT for detecting AIS, 66.67 routine use in all patients with AIS is not cost-effective. with acute stroke has been shown to be cost-effective primarily because of the avoidance of antithrombotic treatment in these patients. 70 In many patients, the made accurately on the basis of the clinical presentation and either a negative N changes, which can be detected in the majority of patients with careful attention NCCT such as those with puzzling clinical presentations or those with uncertain carotid endarterectomy (CEA) or stenting, demonstration of an area of restricted change in treatment that improves outcomes. There are inadequate data at this benefit from DW-MRI, and more research is needed to determine criteria for	g (DW-MRI) is more \$8.69 NCCT scanning detection of acute II diagnosis of ischem ICCT or one showin n. \$6,71,72 In some pati clinical stroke local diffusion on DW-MI time to establish wi	e sensitive than of all patients CH and the nic stroke can be g early ischemic ents with negative ization for early RI may lead to a hich patients will	See Table XV in online Data Supplement 1.
Systems should be established so that brain imaging studies can be performed within 20 minutes of arrival in the ED in at least 50% of patients who may be candidates for IV alteplase and/or mechanical thrombectomy.	ı	B-NR	New recommendation.
The benefit of both IV alteplase and mechanical thrombectomy is time depend therapeutic window leading to bigger proportional benefits. ^{32,73} A brain imaging stude part of the initial evaluation of patients who are potentially eligible for these therap presentation to initial brain imaging can help to reduce the time to treatment initial or mean door-to-imaging times of ≤20 minutes can be achieved in a variety	dy to exclude ICH is r ies. Reducing the tin tion. Studies have sh	ecommended as ne interval from ED nown that median	See Table XVI in online Data Supplement 1.
3. There remains insufficient evidence to identify a threshold of acute CT hypoattenuation severity or extent that affects treatment response to IV alteplase. The extent and severity of acute hypoattenuation or early ischemic changes should not be used as a criterion to withhold therapy for such patients who otherwise qualify.	III: No Benefit	B-R	Recommendation revised from 2015 IV Alteplase. American Heart Association American Stroke Association
Analysis of data from randomized clinical trials (RCTs) of IV alteplase for AIS has a deleterious interaction on clinical outcomes between alteplase treatment and hypoattenuation. 77-81 In the National Institute of Neurological Disorders (NINI) plasminogen activator) trial, subsequent analysis showed there was no significant by the following findings on baseline CT: early ischemic changes (loss of gray/whi or compression of cerebrospinal fluid spaces), the Alberta Stroke Program Ea (ASPECTS), or the Van Swieten score for leukoaraiosis. 78 In both ECASS (European IST (International Stroke Trial)-3, there was no interaction with baseline ASPECT ECASS II, PROACT (Intra-Arterial Prourokinase for Acute Ischemic Stroke) II, and IS for IV alteplase with functional outcomes for ASPECTS subgroups. 77 A pooled analy and IST-3 showed no significant interaction between baseline CT leukoaraic Patients with baseline CT hypoattenuation of greater than one third of the mover excluded from both ECASS I and ECASS II but not from NINDS rtPA and	I baseline CT hypodos) rtPA (recombin modification of the tematter distinction, arly Computed Tom Cooperative Acute S. 7.7.79 A meta-analy T-3 showed no signification of NINDS rtPA, Edisis and the effect hiddle cerebral arte	lensity or ant tissue-type effect of alteplase hypoattenuation, ography Score Stroke Study) II and sis of NINDS rtPA, ificant interactions CASS I, ECASS II, of IV alteplase. 82	See Table XVII in online Data Supplement 1.
4. The CT hyperdense MCA sign should not be used as a criterion to withhold IV alteplase from patients who otherwise qualify.	III: No Benefit	B-R	New recommendation.
Analyses of data from RCTs of IV alteplase for AIS have shown no statistically sclinical outcomes between alteplase treatment and the hyperdense MCA signatrial, there was no interaction between hyperdense MCA sign and treatment for any of the 4 clinical scales (modified Rankin Scale [mRS] score 0–1, NIHSS scale outcome Scale score 0–1) or for death.83 In IST-3, no significant interaction of benefit of alteplase measured by the Oxford Handicap Score at 6 months was of the scale scale score at 6 months was of the scale score at 6 months	n on baseline CT. Ir r outcomes at 3 mo ore 0–1, Barthel Ind the hyperdense MC	n the NINDS rtPA nths measured by ex ≥95, Glasgow	See Table XVIII in online Data Supplement 1.
Routine use of magnetic resonance imaging (MRI) to exclude cerebral microbleeds (CMBs) before administration of IV alteplase is not recommended.	III: No Benefit	B-NR	New recommendation.
No RCTs of IV alteplase in AIS with baseline MRI to identify CMBs have been of the effect of baseline CMB on the treatment effect of alteplase with CMB is the association of baseline CMBs on the risk of sICH after IV alteplase have s in patients with baseline CMBs (OR, 2.18; 95% CI, 1.12–4.22; OR, 2.36; 95% in patients with baseline CMBs is not more common (6.1%, 6.5%) ^{85,86} than in meta-analysis reported that the sICH rate was 40% in patients with >10 CMI events in 15 patients, and patients with >10 CMBs constituted only 0.8% of	s available. Two month hown that sICH is referenced to the size of	eta-analyses of more common ¹⁶ However, sICH al (6.4%). ⁸⁷ One	See Table XIX in online Data Supplement 1.

2.2. Brain Imaging (Continued)	COR	LOE	New, Revised, or Unchanged
6. Use of imaging criteria to select ischemic stroke patients who awoke with stroke or have unclear time of symptom onset for treatment with IV alteplase is not recommended outside a clinical trial.	III: No Benefit	B-NR	Recommendation unchanged from 2015 IV Alteplase. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
7. Multimodal CT and MRI, including perfusion imaging, should not delay administration of IV alteplase.	III: Harm	B-NR	New recommendation.
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		See Table XX and XXI in online Data Supplement 1.	
8. For patients who otherwise meet criteria for EVT, a noninvasive intracranial vascular study is recommended during the initial imaging evaluation of the acute stroke patient, but should not delay IV alteplase if indicated. For patients who qualify for IV alteplase according to guidelines from professional medical societies, initiating IV alteplase before noninvasive vascular imaging is recommended for patients who have not had noninvasive vascular imaging as part of their initial imaging assessment for stroke. Noninvasive intracranial vascular imaging should then be obtained as quickly as possible.	ı	А	Recommendation reworded for clarity from 2015 Endovascular. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
A recent systematic review evaluated the accuracy of prediction instruments where confirmed ischemic stroke patients would be assessed by a neurologi ED, the authors suggested that the NIHSS is the best of the LVO prediction in analysis, a threshold of ≥ 10 would provide the optimal balance between sense To maximize sensitivity (at the cost of lower specificity), a threshold of ≥ 6 we specificity. However, even this low threshold misses some cases with LVO, we that false-positives will be common.	st or emergency pl struments. Accordi sitivity (73%) and s ould have 87% sen	hysician in the ing to their meta- specificity (74%). sitivity and 52%	
9. For patients who otherwise meet criteria for EVT, it is reasonable to proceed with CTA if indicated in patients with suspected intracranial LVO before obtaining a serum creatinine concentration in patients without a history of renal impairment.	lla	B-NR	New recommendation. American American Heart Stroke Association Association
Analyses from a number of observational studies suggest that the risk of control to CTA imaging is relatively low, particularly in patients without a history of refor these laboratory results may lead to delays in mechanical thrombectomy.	nal impairment. Mo		See Table XXII in online Data Supplement 1.
10. In patients who are potential candidates for mechanical thrombectomy, imaging of the extracranial carotid and vertebral arteries, in addition to the intracranial circulation, is reasonable to provide useful information on patient eligibility and endovascular procedural planning.	lla	C-EO	New recommendation.
Knowledge of vessel anatomy and presence of extracranial vessel dissection assist in planning endovascular procedures or identifying patients ineligible f tortuosity or inability to access the intracranial vasculature.		•	
11. Additional imaging beyond CT and CTA or MRI and magnetic resonance angiography (MRA) such as perfusion studies for selecting patients for mechanical thrombectomy in <6 hours is not recommended.	III: No Benefit	B-R	New recommendation.
Of the 6 RCTs that independently demonstrated clinical benefit of mechanica when performed <6 hours from stroke onset, 4 trials (REVASCAT [Randomize Solitaire FR Device Versus Best Medical Therapy in the Treatment of Acute S Large Vessel Occlusion Presenting Within Eight Hours of Symptom Onset the Intention for Thrombectomy as Primary Endovascular Treatment], EXT Thrombolysis in Emergency Neurological Deficits—Intra-Arterial], and ESCAPE Core and Anterior Circulation Proximal Occlusion With Emphasis on Minimizin used some form of advanced imaging to determine eligibility, whereas 2 (THI Evaluation of Intra-Arterial Thrombectomy in Acute Ischemic Stroke) and MR Clinical Trial of Endovascular Treatment for AlS in the Netherlands]) 106,107 requ of LVO. Because the last 2 studies independently demonstrated benefit in the based eligibility criteria could lead to the exclusion of patients who would therefore not indicated at this time. Further RCTs may be helpful to determ paradigms using CTP, CTA, and MRI perfusion and diffusion imaging, inclucollateral flow status, and penumbra, are beneficial for selecting patients for within 6 hours of symptom onset and have an ASPECTS score <6.	ed Trial of Revascu troke Due to Anteri I, SWIFT PRIME [S END-IA [Extending E [Endovascular Treng GT to Recanaliza RACE [Trial and Co CLEAN [Multicente Jured only NCCT and treated group, add benefit from treat Juding measures of	larization With for Circulation Solitaire With I the Time for eatment for Small ation Times]) ¹⁰²⁻¹⁰⁵ st Effectiveness or Randomized and demonstration itional imagingment and are anced imaging f infarct core,	See Table XXIII in online Data Supplement 1.

2.2. Brain Imaging (Continued)	COR	LOE	New, Revised, or Unchanged
12. In selected patients with AIS within 6 to 24 hours of last known normal who have LVO in the anterior circulation, obtaining CTP, DW-MRI, or MRI perfusion is recommended to aid in patient selection for mechanical thrombectomy, but only when imaging and other eligibility criteria from RCTs showing benefit are being strictly applied in selecting patients for mechanical thrombectomy.	I	А	New recommendation.
The DAWN trial (Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes Undergoing Neurointervention With Trevo) used clinical imaging mismatch (a combination of NIHSS and imaging findings on CTP or DW-MRI) as an eligibility criterion to select patients with large anterior circulation vessel occlusion for mechanical thrombectomy between 6 and 24 hours from last known normal. This trial demonstrated an overall benefit in functional outcome at 90 days in the treatment group (mRS score 0–2, 49% versus 13%; adjusted difference, 33%; 95% Cl, 21–44; posterior probability of superiority >0.999). 108 The DEFUSE 3 trial (Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution) used perfusion-core mismatch and maximum core size as imaging criteria to select patients with large anterior circulation occlusion 6 to 16 hours from last seen well for mechanical thrombectomy. This trial showed a benefit in functional outcome at 90 days in the treated group (mRS score 0–2, 44.6% versus 16.7%; RR, 2.67; 95% Cl, 1.60–4.48; <i>P</i> <0.0001). 109 Benefit was independently demonstrated for the subgroup of patients who met DAWN eligibility criteria and for the subgroup who did not. DAWN and DEFUSE 3 are the only RCTs showing benefit of mechanical thrombectomy >6 hours from onset. Therefore, only the eligibility criteria from these trials should be used for patient selection. Although future RCTs may demonstrate that additional eligibility criteria can be used to select patients who benefit from mechanical thrombectomy, at this time, the DAWN and DEFUSE 3 eligibility should be strictly adhered to in clinical practice.			See Table XXIII in online Data Supplement 1.
13. It may be reasonable to incorporate collateral flow status into clinical decision making in some candidates to determine eligibility for mechanical thrombectomy.	llb	C-LD	Recommendation revised from 2015 Endovascular.
Several studies, including secondary analyses from MR CLEAN and IMS (Interventional Management of Stroke) III, provide data supporting the role of collateral assessments in identifying patients likely or unlikely to benefit from mechanical thrombectomy. ^{110,111}		ikely to benefit	See Table XXIV in online Data Supplement 1. American American Stroke Association

2.3. Other Diagnostic Tests

2.3. Other Diagnostic Tests	COR	LOE	New, Revised, or Unchanged
Only the assessment of blood glucose must precede the initiation of IV alteplase in all patients.	1	B-R	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Recommendation was modified to clarify that it is only blood glucose that must be measured in all patients. Other tests, for example, international normalized ratio, activated partial thromboplastin time, and platelet count, may be necessary in some circumstances if there is suspicion of coagulopathy. Given the extremely low risk of unsuspected abnormal platelet counts or coagulation studies in a population, IV alteplase treatment should not be delayed while waiting for hematologic or coagulation testing if there is no reason to suspect an abnormal test.			
Baseline ECG assessment is recommended in patients presenting with AIS, but should not delay initiation of IV alteplase. B-NR		Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.	
3. Baseline troponin assessment is recommended in patients presenting with AIS, but should not delay initiation of IV alteplase.	ı	B-NR	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE revised. See Table LXXXIII in online Data Supplement 1 for original wording.

2.3. Other Diagnostic Tests (Continued)	COR	LOE	New, Revised, or Unchanged
4. Usefulness of chest radiographs in the hyperacute stroke setting in the absence of evidence of acute pulmonary, cardiac, or pulmonary vascular disease is unclear. If obtained, they should not unnecessarily delay administration of IV alteplase.	llb	B-NR	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Additional support for this reworded recommendation from the 2013 AIS Guidelines comes from a cohort study of 615 patients, 243 of whom had chest x-ray done before IV thrombolytics. Cardiopulmonary adverse events in the first 24 hours of admission, endotracheal intubation in the first 7 hours, and in-hospital mortality were not different between the 2 groups. Patients with chest x-ray done before treatment had longer mean DTN times than those who did not (75.8 versus 58.3 minutes; $P=0.0001$). ¹¹²		See Table XXV in online Data Supplement 1.	

3. General Supportive Care and Emergency Treatment

3.1. Airway, Breathing, and Oxygenation

3.1. Airway, Breathing, and Oxygenation	COR	LOE	New, Revised, or Unchanged
Airway support and ventilatory assistance are recommended for the treatment of patients with acute stroke who have decreased consciousness or who have bulbar dysfunction that causes compromise of the airway.	ı	C-EO	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. Supplemental oxygen should be provided to maintain oxygen saturation >94%.	ı	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. Supplemental oxygen is not recommended in nonhypoxic patients with AIS.	III: No Benefit	B-R	Recommendation unchanged from 2013 AIS Guidelines. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Additional support for this unchanged recommendation from the 2013 AIS Guidelines is provided by an RCT of 8003 participants randomized within 24 hours of admission. There was no benefit on functional outcome at 90 days of oxygen by nasal cannula at 2 L/min (baseline O_2 saturation >93%) or 3 L/min (baseline O_2 saturation \leq 93%) continuously for 72 hours or nocturnally for 3 nights. 113			See Table XXVI in online Data Supplement 1.
4. Hyperbaric oxygen (HBO) is not recommended for patients with AIS except when caused by air embolization.	III: No Benefit	B-NR	Recommendation revised from 2013 AIS Guidelines.
The limited data available on the utility of HBO therapy for AlS (not related to cerebral air embolism) show no benefit. ¹¹⁴ HBO therapy is associated with claustrophobia and middle ear barotrauma, ¹¹⁵ as well as an increased risk of seizures. ¹¹⁶ Given the confines of HBO chambers, the ability to closely/adequately monitor patients may also be compromised. HBO thus should be offered only in the context of a clinical trial or to individuals with cerebral air embolism.		See Table XXVII in online Data Supplement 1.	

3.2. Blood Pressure

3.2. Blood Pressure	COR	LOE	New, Revised, or Unchanged
Hypotension and hypovolemia should be corrected to maintain systemic perfusion levels necessary to support organ function.	1	C-EO	New recommendation.
The blood pressure (BP) level that should be maintained in patients with AIS known. Some observational studies show an association between worse out others have not. 117-124 No studies have addressed the treatment of low BP in analysis of 12 studies comparing colloids with crystalloids, the odds of death Clinically important benefits or harms could not be excluded. There are no da parenteral fluid delivery. 125 No studies have compared different isotonic fluids.	comes and lower B patients with strok or dependence wo ata to guide volume	BPs, whereas e. In a systematic ere similar.	See Table XXVIII in online Data Supplement 1.

3.2. Blood Pressure (Continued)	COR	LOE	New, Revised, or Unchanged
Patients who have elevated BP and are otherwise eligible for treatment with IV alteplase should have their BP carefully lowered so that their systolic BP is <185 mm Hg and their diastolic BP is <110 mm Hg before IV fibrinolytic therapy is initiated.	ı	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
			See Table LXXXIII in online Data Supplement 1 for original wording.
The RCTs of IV alteplase required the BP to be <185 mm Hg systolic and <110 mm Hg diastolic before treatment and <180/105 mm Hg for the first 24 hours after treatment. Options to treat arterial hypertension in patients with AIS who are candidates for acute reperfusion therapy are given in Table 5. Some observational studies suggest that the risk of hemorrhage after administration of alteplase is greater in patients with higher BPs ¹²⁶⁻¹³² and in patients with more BP variability. ¹³³ The exact BP at which the risk of hemorrhage after thrombolysis increases is unknown. It is thus reasonable to target the BPs used in the RCTs of IV thrombolysis.			See Table XXIX in online Data Supplement 1.
3. Until additional data become available, in patients for whom intra-arterial therapy is planned and who have not received IV thrombolytic therapy, it is reasonable to maintain BP ≤185/110 mm Hg before the procedure.	lla	B-R	Recommendation revised from 2013 AIS Guidelines.
Of the 6 RCTs that each independently demonstrated clinical benefit of mechanical thrombectomy with stent retrievers when performed <6 hours from stroke onset, 5 (REVASCAT, SWIFT PRIME, EXTEND-IA,THRACE, and MR CLEAN ^{102–104,106,107}) had eligibility exclusions for BP >185/110 mm Hg, The sixth, ESCAPE, ¹⁰⁵ had no BP eligibility exclusion. DAWN also used an exclusion for BP >185/110 mm Hg, ¹⁰⁸ RCT data for optimal BP management approaches in this setting are not available. Because the vast majority of patients enrolled in these RCTs had preprocedural BP managed below 185/110 mm Hg, it is reasonable to use this level as a guideline.		See Table XXIII in online Data Supplement 1.	
4. The usefulness of drug-induced hypertension in patients with AIS is not well established.	IIb	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE revised.

Table 5. Options to Treat Arterial Hypertension in Patients With AIS Who Are Candidates for Acute Reperfusion Therapy*

Class Ilb, LOE C-E0
Patient otherwise eligible for acute reperfusion therapy except that BP is >185/110 mm Hg:
Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or
Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5-15 min, maximum 15 mg/h; when desired BP reached, adjust to maintain proper BP limits; or
Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until desired BP reached; maximum 21 mg/h
Other agents (eg, hydralazine, enalaprilat) may also be considered
If BP is not maintained ≤185/110 mmHg, do not administer alteplase
Management of BP during and after alteplase or other acute reperfusion therapy to maintain BP ≤180/105 mm Hg:
Monitor BP every 15 min for 2 h from the start of alteplase therapy, then every 30 min for 6 h, and then every hour for 16 h
If systolic BP >180–230 mm Hg or diastolic BP >105–120 mm Hg:
Labetalol 10 mg IV followed by continuous IV infusion 2–8 mg/min; or
Nicardipine 5 mg/h IV, titrate up to desired effect by 2.5 mg/h every 5–15 min, maximum 15 mg/h; or
Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until desired BP reached; maximum 21 mg/h
If BP not controlled or diastolic BP >140 mm Hg, consider IV sodium nitroprusside
NO. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

 $AIS\ indicates\ acute\ is chemic\ stroke;\ BP,\ blood\ pressure;\ IV,\ intravenous;\ and\ LOE,\ Level\ of\ Evidence.$

*Different treatment options may be appropriate in patients who have comorbid conditions that may benefit from acute reductions in BP such as acute coronary event, acute heart failure, aortic dissection, or preeclampsia/eclampsia.

Data derived from Jauch et al.1

3.3. Temperature

3.3. Temperature COR LOE		LOE	New, Revised, or Unchanged
1. Sources of hyperthermia (temperature >38°C) should be identified and treated, and antipyretic medications should be administered to lower temperature in hyperthermic patients with stroke.			Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Additional support for this recommendation unchanged from the 2013 AIS Gu retrospective cohort study conducted from 2005 to 2013 of patients admitted New Zealand, and the United Kingdom. Peak temperature in the first 24 hour with an increased risk of in-hospital death compared with normothermia in 9	See Tables XXX and XXXI in online Data Supplement 1.		
The benefit of induced hypothermia for treating patients with ischemic stroke is not well established. Hypothermia should be offered only in the context of ongoing clinical trials.	Recommendation revised from 2013 AIS Guidelines.		
Hypothermia is a promising neuroprotective strategy, but its benefit in patients with AIS has not been proven. Most studies suggest that induction of hypothermia is associated with an increase in the risk of infection, including pneumonia. 135-138 Therapeutic hypothermia should be undertaken only in the context of a clinical trial.			See Tables XXXII and XXXIII in online Data Supplement 1.

3.4. Blood Glucose

3.4. Blood Glucose	COR	LOE	New, Revised, or Unchanged
1. Evidence indicates that persistent in-hospital hyperglycemia during the first 24 hours after AIS is associated with worse outcomes than normoglycemia and thus, it is reasonable to treat hyperglycemia to achieve blood glucose levels in a range of 140 to 180 mg/dL and to closely monitor to prevent hypoglycemia in patients with AIS.	lla	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Hypoglycemia (blood glucose <60 mg/dL) should be treated in patients with AIS.	-	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

3.5. IV Alteplase

3.5. IV Alteplase	New, Revised, or Unchanged		
IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 minutes with initial 10% of dose given as bolus over 1 minute) is recommended for selected patients who may be treated within 3 hours of ischemic stroke symptom onset or patient last known well or at baseline state. Physicians should review the criteria outlined in Table 6 to determine patient eligibility.	_	A	Recommendation reworded for clarity from 2013 AIS Guidelines. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
The safety and efficacy of this treatment when administered within the first 3 I supported by combined data from multiple RCTs ^{90,139,140} and confirmed by in many countries. ¹⁴¹ The eligibility criteria for IV alteplase have evolved over risks have become clearer. A recent AHA statement provides a detailed distrecommendations for IV alteplase in patients with AIS are summarized in Tall well established for adult patients with disabling stroke symptoms regardles Because of this proven benefit and the need to expedite treatment, when a paphasia, confusion) and a legally authorized representative is not immediately it is justified to proceed with IV thrombolysis in an otherwise eligible adult patiental, a lower dose of IV alteplase (0.6 mg/kg) was not shown to be equivalent treduction of death and disability at 90 days. ¹⁴³ Main elements of postthromboly.	See Table XXXIV in online Data Supplement 1.		
2. IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 minutes with initial 10% of dose given as bolus over 1 minute) is also recommended for selected patients who can be treated within 3 and 4.5 hours of ischemic stroke symptom onset or patient last known well. Physicians should review the criteria outlined in Table 6 determine patient eligibility.	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
One trial (ECASS-III) specifically evaluating the efficacy of IV alteplase within 3 ar and pooled analysis of multiple trials testing IV alteplase within various time wind thrombolysis up to 4.5 hours after symptom onset. ECASS-III excluded octogenaria of international normalized ratio, patients with combined history of diabetes mellit patients with very severe strokes (NIHSS score >25) because of a perceived exces	See Table XXXIV in online Data Supplement 1.		

those cases. However, careful analysis of available published data summarized in an AHA/American Stroke Association scientific statement indicates that these exclusion criteria from the trial may not be justified in practice (Table 6). 15

3.5. IV Alteplase (Continued)	COR	LOE	New, Revised, or Unchanged	
3. For otherwise eligible patients with mild stroke presenting in the 3- to 4.5-hour window, treatment with IV alteplase may be reasonable. Treatment risks should be weighed against possible benefits.	llb	B-NR	New recommendation.	
In ECASS III, there was no significant interaction of benefit (mRS score 0–1 at 90 days) or safety (sICH or death) with stroke severity when patients were categorized by baseline NIHSS score of 0 to 9, 10 to 19, and >20.144 Patients with a minor neurological deficit were excluded. Only 128 patients with an NIHSS score of 0 to 5 were included, and they were not analyzed separately. 145 In SITS-ISTR (Safe Implementation of Treatments in Stroke–International Stroke Thrombolysis Registry), good functional outcomes (mRS score 0–1 at 90 days) and risk of sICH were similar or the same in mild stroke treated in 0 to 3 and 3 to 4.5 hours. 146 Similarly, in the GWTG registry, good functional outcomes, mortality, and risk of sICH were the same in mild stroke treated in 0 to 3 and 3 to 4.5 hours. 147		See Tables XXXV and XXXVI in online Data Supplement 1.		
4. In otherwise eligible patients who have had a previously demonstrated small number (1–10) of CMBs on MRI, administration of IV alteplase is reasonable.	lla	B-NR	New recommendation.	
5. In otherwise eligible patients who have had a previously demonstrated high burden of CMBs (>10) on MRI, treatment with IV alteplase may be associated with an increased risk of sICH, and the benefits of treatment are uncertain. Treatment may be reasonable if there is the potential for substantial benefit.	llb	B-NR	New recommendation.	
MRI with hemosiderin-sensitive sequences has shown that clinically silent CN fourth of patients who have received IV alteplase. No RCTs of IV alteplase in A CMBs have been conducted, so no determination of the effect of baseline CM alteplase with CMB is available. Two meta-analyses of the association of bas IV alteplase have shown that sICH is more common in patients with baseline 4.22; OR, 2.36; 95% CI, 1.21–4.61). 85,86 However, sICH in patients with basel (6.1%, 6.5%) 85,86 than in the NINDS rtPA trial (6.4%). 87 In patients with >10 CMBs co Meta-analysis of the 4 studies that provided information on 3- to 6-month fur the presence of CMBs was associated with worse outcomes after IV alteplase CMBs (OR, 1.58; 95% CI, 1.18–2.14; P =0.002). 85 Thus, the presence of CMB chances of poor outcomes after IV alteplase, but it is unclear whether these repending of thrombolysis. It is also unknown whether the location and number outcomes. These questions deserve further investigation.	American Heart American Heart Stroke Association Association			
6. IV alteplase for adults presenting with an AIS with known sickle cell disease can be beneficial.	New recommendation.			
A case-control analysis using the population from the AHA GWTG-Stroke registickle cell disease (all adults) and 3328 age-, sex-, and race-matched control similar severity of neurological deficits at presentation, showed that sickle cell impact on the safety or the outcome at discharge of treatment with IV alteplates.	ls without sickle c Il disease did not l	ell disease with	See Table XXXVII in online Data Supplement 1	
7. Abciximab should not be administered concurrently with IV alteplase.	III: Harm	B-R	Recommendation revised from 2013 AIS Guidelines.	
8. IV alteplase should not be administered to patients who have received a treatment dose of low-molecular-weight heparin (LMWH) within the previous 24 hours.	III: Harm	B-NR	Recommendation reworded for clarity from 2015 IV Alteplase. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement of or original wording.	
The recommendation refers to full treatment doses and not to prophylactic doses. The 2015 "Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke" stated, "Intravenous alteplase in patients who have received a dose of LMWH within the previous 24 hours is not recommended. This applies to both prophylactic doses and treatment doses (Class III; Level of Evidence B)."15 This statement was updated in a subsequently published erratum to specify that the contraindication does not apply to prophylactic doses.				
9. The potential risks should be discussed during thrombolysis eligibility deliberation and weighed against the anticipated benefits during decision making.	I.	C-EO	Recommendation and Class unchanged from 2015 IV Alteplase. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.	
10. Given the extremely low risk of unsuspected abnormal platelet counts or coagulation studies in a population, it is reasonable that urgent IV alteplase treatment not be delayed while waiting for hematologic or coagulation testing if there is no reason to suspect an abnormal test.	lla	B-NR	Recommendation and Class unchanged from 2015 IV Alteplase. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.	

Powers et al

3.5. IV Alteplase (Continued)	COR	LOE	New, Revised, or Unchanged
Treating clinicians should be aware that hypoglycemia and hyperglycemia may mimic acute stroke presentations and determine blood glucose levels before IV alteplase initiation. IV alteplase is not indicated for nonvascular conditions.	III: No Benefit	B-NR	Recommendation reworded for clarity from 2015 IV Alteplase. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Because time from onset of symptoms to treatment has such a powerful impact on outcomes, treatment with IV alteplase should not be delayed to monitor for further improvement.	III: Harm	C-EO	Recommendation wording modified from 2018 IV Alteplase to match Class III stratifications and reworded for clarity. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
13. In patients undergoing fibrinolytic therapy, physicians should be prepared to treat potential emergent adverse effects, including bleeding complications and angioedema that may cause partial airway obstruction.	ı	B-NR	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1
See Table 8 for options for management of symptomatic intracranial bleeding after administration of IV alteplase for treatment of AIS and Table 9 for option angioedema associated with IV alteplase administration for AIS.			for original wording.
14. BP should be maintained <180/105 mm Hg for at least the first 24 hours after IV alteplase treatment.	l	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
15. The risk of antithrombotic therapy within the first 24 hours after treatment with IV alteplase (with or without EVT) is uncertain. Use might be considered in the presence of concomitant conditions for which such treatment given in the absence of IV alteplase is known to provide substantial benefit or withholding such treatment is known to cause substantial risk.	llb	B-NR	New recommendation.
A retrospective analysis of consecutive ischemic stroke patients admitted to a Korea, found no increased risk of hemorrhage with early initiation of antiplate hours) after IV alteplase or EVT compared with initiation >24 hours. However, to selection bias, and the timing of the initiation of antiplatelet therapy or anti individual level, balancing risk versus benefit. 166	elet or anticoagular , this study may ha	nt therapy (<24 eve been subject	See Table XXXVIII in online Data Supplement 1.
16. In patients eligible for IV alteplase, benefit of therapy is time dependent, and treatment should be initiated as quickly as possible.		A	Recommendation reworded for clarity from 2013 AlS Guidelines. Class and LOE unchanged.

Table 6. Eligibility Recommendations for IV Alteplase in Patients With AIS

Indications (Class I)	
Within 3 h*	IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 min with initial 10% of dose given as bolus over 1 min) is recommended to selected patients who may be treated within 3 h of ischemic stroke symptom onset or patient last known well or at baseline state. Physicians should review the criteria outlined in this table to determine patient eligibility.† (<i>Class I</i> ; <i>LOE A</i>)
Age	For otherwise medically eligible patients \geq 18 y of age, IV alterplase administration within 3 h is equally recommended for patients <80 and >80 y of age.† (Class I; LOE A)
Severity	For severe stroke symptoms, IV alteplase is indicated within 3 h from symptom onset of ischemic stroke. Despite increased risk of hemorrhagic transformation, there is still proven clinical benefit for patients with severe stroke symptoms.† (Class I; LOE A)
	For patients with mild but disabling stroke symptoms, IV alteplase is indicated within 3 h from symptom onset of ischemic stroke. There should be no exclusion for patients with mild but nonetheless disabling stroke symptoms, in the opinion of the treating physician, from treatment with IV alteplase because there is proven clinical benefit for those patients.† (Class I; LOE B-R)‡
3–4.5 h*	IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 min with initial 10% of dose given as bolus over 1 min) is also recommended for selected patients who can be treated within 3 and 4.5 h of ischemic stroke symptom onset or patient last know well. Physicians should review the criteria outlined in this table to determine patient eligibility.† (Class I; LOE B-R)‡
Age Diabetes mellitus Prior stroke Severity OACs Imaging	IV alteplase treatment in the 3- to 4.5-h time window is recommended for those patients \leq 80 y of age, without a history of both diabetes mellitus and prior stroke, NIHSS score \leq 25, not taking any OACs, and without imaging evidence of ischemic injury involving more than one third of the MCA territory.† (<i>Class I; LOE B-R</i>)‡
Urgency	Treatment should be initiated as quickly as possible within the above listed time frames because time to treatment is strongly associated with outcomes.† (Class I; LOE A)
ВР	IV alteplase is recommended in patients whose BP can be lowered safely (to <185/110 mm Hg) with antihypertensive agents, with the physician assessing the stability of the BP before starting IV alteplase.† (Class I; LOE B-NR)
Blood glucose	IV alteplase is recommended in otherwise eligible patients with initial glucose levels >50 mg/dL.† (Class I; LOE A)
СТ	IV alteplase administration is recommended in the setting of early ischemic changes on NCCT of mild to moderate extent (other the frank hypodensity).† (Class I; LOE A)
Prior antiplatelet therapy	IV alteplase is recommended for patients taking antiplatelet drug monotherapy before stroke on the basis of evidence that the benefit of alteplase outweighs a possible small increased risk of sICH.† (Class I; LOE A)
	IV alteplase is recommended for patients taking antiplatelet drug combination therapy (eg, aspirin and clopidogrel) before stroke of the basis of evidence that the benefit of alteplase outweighs a probable increased risk of sICH.† (Class I; LOE B-NR)‡
End-stage renal disease	In patients with end-stage renal disease on hemodialysis and normal aPTT, IV alteplase is recommended.† (Class I; LOE C-LD)‡ However, those with elevated aPTT may have elevated risk for hemorrhagic complications.
Contraindications (Class III)	
Time of onset	IV alteplase is not recommended in ischemic stroke patients who have an unclear time and/ or unwitnessed symptom onset and in whom the time last known to be at baseline state is >3 or 4.5 h.† (Class III: No Benefit; LOE B-NR)‡§
	IV alteplase is not recommended in ischemic stroke patients who awoke with stroke with time last known to be at baseline state or 4.5 h.† (Class III: No Benefit; LOE B-NR)‡§
CT	IV alteplase should not be administered to a patient whose CT reveals an acute intracranial hemorrhage.† (Class III: Harm; LOE C-EO)‡§
	There remains insufficient evidence to identify a threshold of hypoattenuation severity or extent that affects treatment response to alteplase. However, administering IV alteplase to patients whose CT brain imaging exhibits extensive regions of clear hypoattenuation is not recommended. These patients have a poor prognosis despite IV alteplase, and severe hypoattenuation defined as obvious hypodensity represents irreversible injury.† (Class III: No Benefit; LOE A)§
Ischemic stroke within 3 mo	Use of IV alteplase in patients presenting with AIS who have had a prior ischemic stroke within 3 mo may be harmful.† (Class III: Harm; LOE B-NR)‡§
Severe head trauma within 3 mo	In AIS patients with recent severe head trauma (within 3 mo), IV alteplase is contraindicated.† (Class III: Harm; LOE C-EO)‡§
	Given the possibility of bleeding complications from the underlying severe head trauma, IV alteplase should not be administered in posttraumatic infarction that occurs during the acute in-hospital phase.† (Class III: Harm; LOE C-EO)‡§ (Recommendation wording modified to match Class III stratifications.)
Intracranial/intraspinal surgery within 3 mo	For patients with AIS and a history of intracranial/spinal surgery within the prior 3 mo, IV alteplase is potentially harmful.† (Class II Harm; LOE C-EO)‡§

Table 6. Continued

History of intrograpio	Waltanian administration is national who have a history of intrograpial hamorrhogo is natantially harmful + /Class III. Harms
History of intracranial hemorrhage	IV alteplase administration in patients who have a history of intracranial hemorrhage is potentially harmful.† (Class III: Harm; LOE C-EO)‡§
Subarachnoid hemorrhage	IV alteplase is contraindicated in patients presenting with symptoms and signs most consistent with an SAH.† (Class III: Harm LOE C-EO)‡§
Gl malignancy or Gl bleed within 21 d	Patients with a structural GI malignancy or recent bleeding event within 21 d of their stroke event should be considered high risk, and IV alteplase administration is potentially harmful.† (Class III: Harm; LOE C-EO)‡§
Coagulopathy	The safety and efficacy of IV alteplase for acute stroke patients with platelets <100 000/mm 3 , INR >1.7, aPTT >40 s, or PT >15 s are unknown, and IV alteplase should not be administered.† (<i>Class III: Harm; LOE C-EO</i>) ‡ \$
	(In patients without history of thrombocytopenia, treatment with IV alteplase can be initiated before availability of platelet count but should be discontinued if platelet count is <100 000/mm³. In patients without recent use of OACs or heparin, treatment with IV alteplase can be initiated before availability of coagulation test results but should be discontinued if INR is >1.7 or PT is abnormall elevated by local laboratory standards.)
	(Recommendation wording modified to match Class III stratifications.)
LMWH	IV alteplase should not be administered to patients who have received a treatment dose of LMWH within the previous 24 h.† (Class III: Harm; LOE B-NR)II
	(Recommendation wording modified to match Class III stratifications.)
Thrombin inhibitors or factor Xa inhibitors	The use of IV alteplase in patients taking direct thrombin inhibitors or direct factor Xa inhibitors has not been firmly established but may be harmful.† (Class III: Harm; LOE C-EO)‡§ IV alteplase should not be administered to patients taking direct thrombin inhibitors or direct factor Xa inhibitors unless laboratory tests such as aPTT, INR, platelet count, ecarin clotting time, thrombin time, or appropriate direct factor Xa activity assays are normal or the patient has not received a dose of these agents for >48 h (assuming normal renal metabolizing function) (Alteplase could be considered when appropriate laboratory tests such as aPTT, INR, ecarin clotting time, thrombin time, or direct factor Xa activity assays are normal or when the patient has not taken a dose of these ACs for >48 h and renal function is normal.
	(Recommendation wording modified to match Class III stratifications.)
Glycoprotein IIb/IIIa receptor inhibitors	Antiplatelet agents that inhibit the glycoprotein Ilb/Illa receptor should not be administered concurrently with IV alteplase outside a clinical trial.† (Class III: Harm; LOE B-R)‡§
	(Recommendation wording modified to match Class III stratifications.) American American
Infective endocarditis	For patients with AIS and symptoms consistent with infective endocarditis, treatment with IV alteplase should not be administered because of the increased risk of intracranial hemorrhage.† (Class III: Harm; LOE C-LD)‡§ (Recommendation wording modified to match Class III stratifications.)
Aartia arab diagostian	
Aortic arch dissection	IV alteplase in AIS known or suspected to be associated with aortic arch dissection is potentially harmful and should not be administered.† (Class III: Harm; LOE C-EO)‡§ (Recommendation wording modified to match Class III stratifications.)
Intra-axial intracranial neoplasm	IV alteplase treatment for patients with AIS who harbor an intra-axial intracranial neoplasm is potentially harmful.† (Class III: Harm LOE C-EO)‡§
Additional recommendation	is for treatment with IV alteplase for patients with AIS (Class II)
Extended 3- to 4.5-h window	For patients >80 y of age presenting in the 3- to 4.5-h window, IV alteplase is safe and can be as effective as in younger patients. (Class IIa; LOE B-NR)‡
	For patients taking warfarin and with an INR ≤1.7 who present in the 3- to 4.5-h window, IV alteplase appears safe and may be beneficial.† (Class Ilb; LOE B-NR)‡
	In AIS patients with prior stroke and diabetes mellitus presenting in the 3- to 4.5- h window, IV alteplase may be as effective as treatment in the 0- to 3-h window and may be a reasonable option.† (Class Ilb; LOE B-NR)‡
Severity 0- to 3-h window	Within 3 h from symptom onset, treatment of patients with mild ischemic stroke symptoms that are judged as nondisabling may b considered. Treatment risks should be weighed against possible benefits; however, more study is needed to further define the risk to-benefit ratio.† (Class Ilb; LOE C-LD)‡
Severity 3- to 4.5-h window	For otherwise eligible patients with mild stroke presenting in the 3- to 4.5-h window, IV alteplase may be as effective as treatmen in the 0- to 3-h window and may be a reasonable option. Treatment risks should be weighed against possible benefits. (Class Ilb; LOE B-NR)
	The benefit of IV alteplase between 3 and 4.5 h from symptom onset for patients with very severe stroke symptoms (NIHSS > 25) uncertain.† (Class Ilb; LOE C-LD)
Preexisting disability	Preexisting disability does not seem to independently increase the risk of sICH after IV alteplase, but it may be associated with less neurological improvement and higher mortality. Thrombolytic therapy with IV alteplase for acute stroke patients with preexisting disability (mRS score ≥2) may be reasonable, but decisions should take into account relevant factors, including quality of life, social support, place of residence, need for a caregiver, patients' and families' preferences, and goals of care: (Class Ilb; LOE B-NR)‡

Table 6. Continued

Powers et al

	Patients with preexisting dementia may benefit from IV alteplase. Individual considerations such as life expectancy and premorbid level of function are important to determine whether alteplase may offer a clinically meaningful benefit.† (Class IIb; LOE B-NR)‡
Early improvement	IV alteplase treatment is reasonable for patients who present with moderate to severe ischemic stroke and demonstrate early improvement but remain moderately impaired and potentially disabled in the judgment of the examiner.† (Class Ila; LOE A)
Seizure at onset	IV alteplase is reasonable in patients with a seizure at the time of onset of acute stroke if evidence suggests that residual impairments are secondary to stroke and not a postictal phenomenon.† (Class Ila; LOE C-LD)‡
Blood glucose	Treatment with IV alteplase in patients with AIS who present with initial glucose levels <50 or >400 mg/dL that are subsequently normalized and who are otherwise eligible may be reasonable. (Recommendation modified from 2015 IV Alteplase to conform to te of 2015 IV Alteplase. [Class Ilb; LOE C-LD])‡
Coagulopathy	The safety and efficacy of IV alteplase for acute stroke patients with a clinical history of potential bleeding diathesis or coagulopath are unknown. IV alteplase may be considered on a case-by-case basis.† (Class Ilb; LOE C-EO)‡
	IV alteplase may be reasonable in patients who have a history of warfarin use and an INR \leq 1.7 and/or a PT $<$ 15 s.† (Class Ilb; LOE B-NR)‡
Dural puncture	IV alteplase may be considered for patients who present with AIS, even in instances when they may have undergone a lumbar dura puncture in the preceding 7 d.† (Class Ilb; LOE C-EO)‡
Arterial puncture	The safety and efficacy of administering IV alteplase to acute stroke patients who have had an arterial puncture of a noncompressible blood vessel in the 7 d preceding stroke symptoms are uncertain.† (Class Ilb; LOE C-LD)‡
Recent major trauma	In AIS patients with recent major trauma (within 14 d) not involving the head, IV alteplase may be carefully considered, with the risks of bleeding from injuries related to the trauma weighed against the severity and potential disability from the ischemic stroke. (Recommendation modified from 2015 IV Alteplase to specify that it does not apply to head trauma. [Class Ilb; LOE C-LD])‡
Recent major surgery	Use of IV alteplase in carefully selected patients presenting with AIS who have undergone a major surgery in the preceding 14 d may be considered, but the potential increased risk of surgical-site hemorrhage should be weighed against the anticipated benefits of reduced stroke related neurological deficits.† (Class Ilb; LOE C-LD)‡
Gl and genitourinary bleeding	Reported literature details a low bleeding risk with IV alteplase administration in the setting of past Gl/genitourinary bleeding. Administration of IV alteplase in this patient population may be reasonable.† (Class IIb; LOE G-LD)
	(Note: Alteplase administration within 21 d of a GI bleeding event is not recommended; see Contraindications.)
Menstruation	IV alteplase is probably indicated in women who are menstruating who present with AIS and do not have a history of menorrhagia. However, women should be warned that alteplase treatment could increase the degree of menstrual flow.† (Class Ila; LOE C-EO)
	Because the potential benefits of IV alteplase probably outweigh the risks of serious bleeding in patients with recent or active history of menorrhagia without clinically significant anemia or hypotension, IV alteplase administration may be considered.† (Class Ilb; LOE C-LD)‡
	When there is a history of recent or active vaginal bleeding causing clinically significant anemia, then emergency consultation with gynecologist is probably indicated before a decision about IV alteplase is made.† (Class IIa; LOE C-EO)‡
Extracranial cervical dissections	IV alteplase in AIS known or suspected to be associated with extracranial cervical arterial dissection is reasonably safe within 4.5 hand probably recommended.† (Class Ila; LOE C-LD)‡
Intracranial arterial dissection	IV alteplase usefulness and hemorrhagic risk in AIS known or suspected to be associated with intracranial arterial dissection remain unknown, uncertain, and not well established.† (Class Ilb; LOE C-LD)‡
Unruptured intracranial aneurysm	For patients presenting with AIS who are known to harbor a small or moderate-sized (<10 mm) unruptured and unsecured intracranial aneurysm, administration of IV alteplase is reasonable and probably recommended.† (Class IIa; LOE C-LD)‡
	Usefulness and risk of IV alteplase in patients with AIS who harbor a giant unruptured and unsecured intracranial aneurysm are no well established.† (Class Ilb; LOE C-LD)‡
Intracranial vascular malformations	For patients presenting with AIS who are known to harbor an unruptured and untreated intracranial vascular malformation the usefulness and risks of administration of IV alteplase are not well established.† (Class Ilb; LOE C-LD)‡
	Because of the increased risk of ICH in this population of patients, IV alteplase may be considered in patients with stroke with severe neurological deficits and a high likelihood of morbidity and mortality to outweigh the anticipated risk of ICH secondary to thrombolysis.† (Class Ilb; LOE C-LD).‡
CMBs	In otherwise eligible patients who have previously had a small number (1–10) of CMBs demonstrated on MRI, administration of IV alteplase is reasonable. (Class Ila; Level B-NR)
	In otherwise eligible patients who have previously had a high burden of CMBs (>10) demonstrated on MRI, treatment with IV alteplase may be associated with an increased risk of sICH, and the benefits of treatment are uncertain. Treatment may be reasonable if there is the potential for substantial benefit. (Class Ilb; Level B-NR)

Table 6. Continued

Extra-axial intracranial	
neoplasms	IV alteplase treatment is probably recommended for patients with AIS who harbor an extra-axial intracranial neoplasm.† (Class Ila; LOE C-EO)‡
Acute MI	For patients presenting with concurrent AIS and acute MI, treatment with IV alteplase at the dose appropriate for cerebral ischemia followed by percutaneous coronary angioplasty and stenting if indicated, is reasonable.† (Class IIa; LOE C-EO)‡
Recent MI	For patients presenting with AIS and a history of recent MI in the past 3 mo, treating the ischemic stroke with IV alteplase is reasonable if the recent MI was non-STEMI.† (Class IIa; LOE C-LD)‡
	For patients presenting with AIS and a history of recent MI in the past 3 mo, treating the ischemic stroke with IV alteplase is reasonable if the recent MI was a STEMI involving the right or inferior myocardium.† (Class IIa; LOE C-LD)‡
	For patients presenting with AIS and a history of recent MI in the past 3 mo, treating the ischemic stroke with IV alteplase may reasonable if the recent MI was a STEMI involving the left anterior myocardium.† (Class IIb; LOE C-LD)‡
Other cardiac diseases	For patients with major AIS likely to produce severe disability and acute pericarditis, treatment with IV alteplase may be reasonable (Class Ilb; LOE C-EO)‡; urgent consultation with a cardiologist is recommended in this situation.
	For patients presenting with moderate AIS likely to produce mild disability and acute pericarditis, treatment with IV alteplase is of uncertain net benefit.† (Class Ilb; LOE C-EO)‡
	For patients with major AIS likely to produce severe disability and known left atrial or ventricular thrombus, treatment with IV alteplase may be reasonable.† (Class Ilb; LOE C-LD)‡
	For patients presenting with moderate AIS likely to produce mild disability and known left atrial or ventricular thrombus, treatment with IV alteplase is of uncertain net benefit.† (Class Ilb; LOE C-LD)‡
	For patients with major AIS likely to produce severe disability and cardiac myxoma, treatment with IV alteplase may be reasonable. (Class Ilb; LOE C-LD)‡
	For patients presenting with major AIS likely to produce severe disability and papillary fibroelastoma, treatment with IV alteplase may be reasonable.† (Class Ilb; LOE C-LD)‡
Procedural stroke	IV alteplase is reasonable for the treatment of AIS complications of cardiac or cerebral angiographic procedures, depending on the usual eligibility criteria.† (Class Ila; LOE A)‡
Systemic malignancy	The safety and efficacy of alteplase in patients with current malignancy are not well established.† (Class IIb; LOE C-LD)‡ Patients with systemic malignancy and reasonable (>6 mo) life expectancy may benefit from IV alteplase if other contraindications such as coagulation abnormalities, recent surgery, or systemic bleeding do not coexist.
Pregnancy	IV alteplase administration may be considered in pregnancy when the anticipated benefits of treating moderate or severe stroke outweigh the anticipated increased risks of uterine bleeding.† (Class b; LOE C-LD)‡
	The safety and efficacy of IV alteplase in the early postpartum period (<14 d after delivery) have not been well established.† (Class IIb; LOE C-LD)‡
Ophthalmological conditions	Use of IV alteplase in patients presenting with AIS who have a history of diabetic hemorrhagic retinopathy or other hemorrhagic ophthalmic conditions is reasonable to recommend, but the potential increased risk of visual loss should be weighed against the anticipated benefits of reduced stroke-related neurological deficits.† (Class Ila; LOE B-NR)‡
Sickle cell disease	IV alteplase for adults presenting with an AIS with known sickle cell disease can be beneficial. (Class Ila; LOE B-NR)
Illicit drug use	Treating clinicians should be aware that illicit drug use may be a contributing factor to incident stroke. IV alteplase is reasonable in instances of illicit drug use—associated AIS in patients with no other exclusions.† (Class IIa; LOE C-LD);
	The risk of symptomatic intracranial hemorrhage in the stroke mimic population is quite low; thus, starting IV alteplase is probably

Clinicians should also be informed of the indications and contraindications from local regulatory agencies (for current information from the US Food and Drug Administration refer to http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103172s5203lbl.pdf).

For a detailed discussion of this topic and evidence supporting these recommendations, refer to the American Heart Association (AHA) scientific statement on the rationale for inclusion and exclusion criteria for IV alteplase in AIS.¹⁵

AC indicates anticoagulants; ACC, American College of Cardiology; AlS, acute ischemic stroke; AHA, American Heart Association; aPTT, activated partial thromboplastin time; BP, blood pressure; CMB, cerebral microbleed; CT, computed tomography; GI, gastrointestinal; ICH, intracerebral hemorrhage; INR, international normalized ratio; IV, intravenous; LMWH, low-molecular-weight heparin; LOE, level of evidence; MCA, middle cerebral artery; MI, myocardial infarction; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NCCT, noncontrast computed tomography; NIHSS, National Institutes of Health Stroke Scale; OAC, oral anticoagulant; PT, prothromboplastin time; sICH, symptomatic intracerebral hemorrhage; and STEMI, ST-segment-elevation myocardial infarction.

*When uncertain, the time of onset time should be considered the time when the patient was last known to be normal or at baseline neurological condition.

†Recommendation unchanged or reworded for clarity from 2015 IV Alteplase. See Table LXXXIII in online Data Supplement 1 for original wording.

‡LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

§COR amended to conform with ACC/AHA 2015 Recommendation Classification System.

ISee also the text of these guidelines for additional information on these recommendations.

Table 7. Treatment of AIS: IV Administration of Alteplase

Infuse 0.9 mg/kg (maximum dose 90 mg) over 60 min, with 10% of the dose given as a bolus over 1 min.

Admit the patient to an intensive care or stroke unit for monitoring.

If the patient develops severe headache, acute hypertension, nausea, or vomiting or has a worsening neurological examination, discontinue the infusion (if IV alteplase is being administered) and obtain emergency head CT scan

Measure BP and perform neurological assessments every 15 min during and after IV alteplase infusion for 2 h, then every 30 min for 6 h, then hourly until 24 h after IV alteplase treatment.

Increase the frequency of BP measurements if SBP is >180 mm Hg or if DBP is >105 mm Hg; administer antihypertensive medications to maintain BP at or below these levels (Table 5).

Delay placement of nasogastric tubes, indwelling bladder catheters, or intra-arterial pressure catheters if the patient can be safely managed without them.

Obtain a follow-up CT or MRI scan at 24 h after IV alteplase before starting anticoagulants or antiplatelet agents.

AlS indicates acute ischemic stroke; BP, blood pressure; CT, computed tomography; DBP, diastolic blood pressure; IV, intravenous; MRI, magnetic resonance imaging; and SBP, systolic blood pressure.

Reprinted from Jauch et al.¹ Copyright © 2013, American Heart Association, Inc.

Table 8. Management of Symptomatic Intracranial Bleeding Occurring Within 24 Hours After Administration of IV Alteplase for Treatment of AIS

Class IIb, LOE C-EO

Stop alteplase infusion

CBC, PT (INR), aPTT, fibrinogen level, and type and cross-match

Emergent nonenhanced head CT

Cryoprecipitate (includes factor VIII): 10 U infused over 10–30 min (onset in 1 h, peaks in 12 h); administer additional dose for fibrinogen level of <200 mg/dL

Tranexamic acid 1000 mg IV infused over 10 min OR ϵ -aminocaproic acid 4–5 g over 1 h, followed by 1 g IV until bleeding is controlled (peak onset in 3 h)

Hematology and neurosurgery consultations

Supportive therapy, including BP management, ICP, CPP, MAP, temperature, and glucose control

AIS indicates acute ischemic stroke; aPTT, activated partial thromboplastin time; BP, blood pressure; CBC, complete blood count; CPP, cerebral perfusion pressure; CT, computed tomography; ICP, intracranial pressure; INR, international normalized ratio; IV, intravenous; LOE, Level of Evidence; MAP, mean arterial pressure; and PT, prothrombin time.

Sources: Sloan et al, 149 Mahaffey et al, 150 Goldstein et al, 151 French et al, 152 Yaghi et al, 153-155 Stone et al, 156 and Frontera et al. 157

Table 9. Management of Orolingual Angioedema Associated With IV Alteplase Administration for AIS

Class Ilb. LOE C-EO

Maintain airway

Endotracheal intubation may not be necessary if edema is limited to anterior tongue and lips.

Edema involving larynx, palate, floor of mouth, or oropharynx with rapid progression (within 30 min) poses higher risk of requiring intubation.

Awake fiberoptic intubation is optimal. Nasal-tracheal intubation may be required but poses risk of epistaxis post-IV alteplase. Cricothyroidotomy is rarely needed and also problematic after IV alteplase.

Discontinue IV alteplase infusion and hold ACEIs

Administer IV methylprednisolone 125 mg

Administer IV diphenhydramine 50 mg

Administer ranitidine 50 mg IV or famotidine 20 mg IV

If there is further increase in angioedema, administer epinephrine (0.1%) 0.3 mL subcutaneously or by nebulizer 0.5 mL

lcatibant, a selective bradykinin $\rm B_2$ receptor antagonist, 3 mL (30 mg) subcutaneously in abdominal area; additional injection of 30 mg may be administered at intervals of 6 h not to exceed total of 3 injections in 24 h; and plasma-derived C1 esterase inhibitor (20 IU/kg) has been successfully used in hereditary angioedema and ACEI-related angioedema

Supportive care

ACEI indicates angiotensin-converting enzyme inhibitor; AIS, acute ischemic stroke; IV, intravenous; and LOE, Level of Evidence.

Sources: Foster-Goldman and McCarthy, ¹⁸⁸ Gorski and Schmidt, ¹⁵⁹ Lewis, ¹⁶⁰ Lin et al, ¹⁶¹ Correia et al, ¹⁶² O'Carroll and Aguilar, ¹⁶³ Myslimi et al, ¹⁶⁴ and Pahs et al, ¹⁶⁵

3.6. Other IV Thrombolytics and Sonothrombolysis

3.6. Other IV Thrombolytics and Sonothrombolysis	COR	LOE	New, Revised, or Unchanged
The benefit of IV defibrinogenating agents and of IV fibrinolytic agents other than alteplase and tenecteplase is unproven; therefore, their administration is not recommended outside a clinical trial.	III: No Benefit	B-R	Recommendation revised from 2013 AIS Guidelines.
Randomized placebo-controlled trials have not shown benefit from the admin 6 hours or desmoteplase within 3 to 9 hours after stroke onset in patients with intracranial artery occlusion or severe stenosis. 92,95,167,168			See Table XXXIX in online Data Supplement 1.
2. Tenecteplase administered as a 0.4-mg/kg single IV bolus has not been proven to be superior or noninferior to alteplase but might be considered as an alternative to alteplase in patients with minor neurological impairment and no major intracranial occlusion.	New recommendation.		
IV tenecteplase has been compared to IV alteplase up to 6 hours after strol III superiority trials; tenecteplase appears to be similarly safe, but it is uncl or more effective than alteplase. 89,91,169,170 In the largest trial of 1100 subject mg/kg failed to demonstrate superiority and had a safety and efficacy prof stroke population composed predominantly of patients with minor neurolog score, 4) and no major intracranial occlusion. To Tenecteplase is given as a 1-hour infusion of alteplase.	See Table XXXIX in online Data Supplement 1.		
3. The use of sonothrombolysis as adjuvant therapy with IV thrombolysis is not recommended. III: No Benefit B-R			New recommendation.
Since the publication of the 2013 AlS Guidelines, a further RCT of sonothrombolysis as adjuvant therapy for IV thrombolysis has shown no clinical benefit. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study) randomized 183 patients who had received either alteplase or tenecteplase for AlS within 4.5 hours of onset to either contrast-enhanced sonothrombolysis (93 patients) or sham (90 patients). Neurological improvement at 24 hours and functional outcome at 90 days were not statistically significantly different in the 2 groups, nor were the rates of sICH. ¹⁷¹ At this time, there are no RCT data to support additional clinical benefit of sonothrombolysis as adjuvant therapy for IV thrombolysis.			See Table XL in online Data Supplement 1. American Heart Association American Stroke Association

3.7. Mechanical Thrombectomy

3.7. Mechanical Thrombectomy	COR	LOE	New, Revised, or Unchanged
Patients eligible for IV alteplase should receive IV alteplase even if EVTs are being considered.	ı	А	Recommendation reworded for clarity from 2015 Endovascular. See Table LXXXIII in online Data Supplement 1 for original wording.
In patients under consideration for mechanical thrombectomy, observation after IV alteplase to assess for clinical response should not be performed.	Recommendation revised from 2015 Endovascular.		
In pooled patient-level data from 5 trials (HERMES [Highly Effective Reperful Endovascular Stroke Trials], which included the 5 trials MR CLEAN, ESCAPE EXTEND-IA), the odds of better disability outcomes at 90 days (mRS scale of thrombectomy group declined with longer time from symptom onset to expodds ratio (c0R) at 3 hours, 2.79 (95% Cl, 1.96–3.98), absolute risk differe scores, 39.2%; c0R at 6 hours, 1.98 (95% Cl, 1.30–3.00), ARD, 30.2%; and 0.86–2.88), ARD, 15.7%, retaining statistical significance through 7 hours who achieved substantial reperfusion with endovascular thrombectomy, ea associated with a less favorable degree of disability (c0R, 0.84; 95% Cl, 0. functional independence (0R, 0.81; 95% Cl, 0.71–0.92; ARD, –5.2%; 95% in mortality (0R, 1.12; 95% Cl, 0.93–1.34; ARD, 1.5%; 95% Cl, –0.9 to 4.2 address the question of whether patients should be observed after IV altepl before pursuing mechanical thrombectomy. However, one can infer that be days were directly associated with time from symptom onset to arterial pur mechanical thrombectomy, including observing for a clinical response after Therefore, the recommendation is slightly modified from the 2015 Endovas	See Tables XXIII and XLI in online Data Supplement 1.		

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
3. Patients should receive mechanical thrombectomy with a stent retriever if they meet all the following criteria: (1) prestroke mRS score of 0 to 1; (2) causative occlusion of the internal carotid artery or MCA segment 1 (M1); (3) age ≥18 years; (4) NIHSS score of ≥6; (5) ASPECTS of ≥6; and (6) treatment can be initiated (groin puncture) within 6 hours of symptom onset.	ı	А	Recommendation revised from 2015 Endovascular.
Results from 6 recent randomized trials of mechanical thrombectomy using predominantly stent retriever devices (MR CLEAN, SWIFT PRIME, EXTEND-IA, ESCAPE, REVASCAT, THRACE) support Class I, LOE A recommendations for a defined group of patients as described in the 2015 guidelines. ¹⁰²⁻¹⁰⁷ A pooled, patient-level analysis from 5 of these studies reported by the HERMES collaboration showed treatment effect in the subgroup of 188 patients not treated with IV alteplase (cOR, 2.43; 95% CI, 1.30–4.55); therefore, pretreatment with IV alteplase has been removed from the prior recommendation. The HERMES pooled patient-level data also showed that mechanical thrombectomy had a favorable effect over standard care in patients ≥80 years old (cOR, 3.68; 95% CI, 1.95–6.92). ¹⁷² In patient-level data pooled from trials in which the Solitaire was the only or the predominant device used, a prespecified meta-analysis (SEER Collaboration [Safety and Efficacy of Solitaire Stent Thrombectomy–Individual Patient Data Meta-Analysis of Randomized Trials]: SWIFT PRIME, ESCAPE, EXTEND-IA, REVASCAT) showed that mechanical thrombectomy had a favorable effect over standard care in patients ≥80 years old (3.46; 95% CI, 1.58–7.60). ¹⁷³ In a meta-analysis of 5 RCTs (MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT), there was favorable effect with mechanical thrombectomy over standard care without heterogeneity of effect across patient age subgroups (for patient age <70 and ≥70 years: OR, 2.41; 95% CI, 1.51–3.84; and OR, 2.26; 95% CI, 1.20–4.26, respectively). ¹⁷⁴ However, the number of patients in these trials who were ≥90 years of age was very small, and the benefit of mechanical thrombectomy over standard care in patients ≥90 years of age is not clear. As with any treatment decision in an elderly patient, consideration of comorbidities and risks should factor into the decision making for mechanical thrombectomy.			See Tables XXIII and XLI in online Data Supplement 1.
4. Although the benefits are uncertain, the use of mechanical thrombectomy with stent retrievers may be reasonable for carefully selected patients with AIS in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the MCA segment 2 (M2) or MCA segment 3 (M3) portion of the MCAs.	llb	B-R	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE revised. See Table LXXXIII in online Data Supplement 1 for original wording.
In pooled patient-level data from 5 trials (HERMES, which included the 5 trial SWIFT PRIME, and EXTEND-IA), the direction of treatment effect for mechanic care was favorable in M2 occlusions, but the adjusted common OR was not \$0.51-3.21).\(^{172}\) In patient-level data pooled from trials in which the Solitaire we device used, a prespecified meta-analysis (SEER Collaboration: SWIFT PRIME showed that the direction of treatment effect was favorable for mechanical trian M2 occlusions, but the OR and 95% CI were not significant.\(^{173}\) In an analysis (Solitaire With the Intention for Thrombectomy), STAR (Solitaire Flow Restora Revascularization), DEFUSE 2, and IMS III, among patients with M2 occlusion excellent functional outcomes (mRS score 0–1; OR, 2.2; 95% CI, 1.0–4.7).\(^{175}\) mechanical thrombectomy for M2/M3 occlusions does not change substantive Stroke Association focused update.	See Tables XXIII and XLI in online Data Supplement 1.		
5. Although the benefits are uncertain, the use of mechanical thrombectomy with stent retrievers may be reasonable for carefully selected patients with AIS in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the anterior cerebral arteries, vertebral arteries, basilar artery, or posterior cerebral arteries.	llb	C-EO	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
6. Although its benefits are uncertain, the use of mechanical thrombectomy with stent retrievers may be reasonable for patients with AIS in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have prestroke mRS score >1, ASPECTS <6, or NIHSS score <6, and causative occlusion of the internal carotid artery (ICA) or proximal MCA (M1). Additional randomized trial data are needed.	lib	B-R	Recommendation unchanged from 2015 Endovascular.

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
7. In selected patients with AIS within 6 to 16 hours of last known normal who have LVO in the anterior circulation and meet other DAWN or DEFUSE 3 eligibility criteria, mechanical thrombectomy is recommended.	ı	А	New recommendation.
8. In selected patients with AIS within 6 to 24 hours of last known normal who have LVO in the anterior circulation and meet other DAWN eligibility criteria, mechanical thrombectomy is reasonable.	lla	B-R	New recommendation.
The DAWN trial used clinical imaging mismatch (a combination of NIHSS scoor DW-MRI) as eligibility criteria to select patients with large anterior circulat with mechanical thrombectomy between 6 and 24 hours from last known no an overall benefit in function outcome at 90 days in the treatment group (mF adjusted difference, 33%; 95% Cl, 21–44; posterior probability of superiority few strokes with witnessed onset (12%). The DEFUSE 3 trial used perfusion-core size as imaging criteria to select patients with large anterior circulation last seen well for mechanical thrombectomy. This trial showed a benefit in fit the treated group (mRS score 0–2, 44.6% versus 16.7%; RR, 2.67; 95% Cl, was independently demonstrated for the subgroup of patients who met DAW subgroup who did not. DAWN and DEFUSE 3 are the only RCTs showing benebel hours from onset. Therefore, only the eligibility criteria from these trials a selection. Although future RCTs may demonstrate that additional eligibility criteris who benefit from mechanical thrombectomy, at this time, the DAWN be strictly adhered to in clinical practice.	See Table XXIII in online Data Supplement 1		
9. The technical goal of the thrombectomy procedure should be reperfusion to a modified Thrombolysis in Cerebral Infarction (mTICI) 2b/3 angiographic result to maximize the probability of a good functional clinical outcome.	1	А	Recommendation reworded for clarity from 2015 Endovascular. See Table LXXXIII in online Data Supplement for original wording.
exist, but the mTICl score is the current assessment tool of choice, with prove outcomes. \(^{176,177}\) All recent endovascular trials used the mTICl 2b/3 threshold frates achieved. In HERMES, 402 of 570 patients (71%) were successfully reptrials with less efficient devices showed lower recanalization rates, 1 factor in benefit from the procedure (IMS III, 41%; MR RESCUE, 25%). The additional benefit from the procedure (IMS III, 41%; MR RESCUE, 25%).	en value in predict for adequate reper erfused to mTICl 2 n their inability to c	ing clinical fusion, with high 2b/3. ¹⁷² Earlier demonstrate	American Heart Stroke Association
Mechanical thrombectomy aims to achieve reperfusion, not simply recanalizate exist, but the mTICl score is the current assessment tool of choice, with prove outcomes. 176,177 All recent endovascular trials used the mTICl 2b/3 threshold for rates achieved. In HERMES, 402 of 570 patients (71%) were successfully repertials with less efficient devices showed lower recanalization rates, 1 factor in benefit from the procedure (IMS III, 41%; MR RESCUE, 25%). The additional between the procedure time from symptom onset to reperfusion with endovascular therapies is highly associated with better clinical outcomes. To ensure benefit, reperfusion to TICl grade 2b/3 should be achieved as early as possible within the therapeutic window.	en value in predict for adequate reper erfused to mTICl 2 n their inability to c	ing clinical fusion, with high 2b/3. ¹⁷² Earlier demonstrate	American American Heart Stroke
exist, but the mTICl score is the current assessment tool of choice, with prove outcomes. 176,177 All recent endovascular trials used the mTICl 2b/3 threshold frates achieved. In HERMES, 402 of 570 patients (71%) were successfully reptrials with less efficient devices showed lower recanalization rates, 1 factor in benefit from the procedure (IMS III, 41%; MR RESCUE, 25%). The additional bit than 2b deserves further investigation. 10. As with IV alteplase, reduced time from symptom onset to reperfusion with endovascular therapies is highly associated with better clinical outcomes. To ensure benefit, reperfusion to TICl grade 2b/3 should be achieved as early as possible within the	en value in predict for adequate reper erfused to mTICl 2 in their inability to openefit of pursuing last MR CLEAN, ESC days (mRS scale comptom onset to express as 39.2%; coll., 0.86–2.88), and latients who achies in was associate and less functiona DAWN trial, the likely group declined reperfusion with erfusion scores exing clinical outcomfusion, with high r 2b/3. 172 Earlier trial	ing clinical fusion, with high th/3.172 Earlier demonstrate mTICl of 3 rather B-R CAPE, REVASCAT, distribution) expected arterial to the following and with a less of the following and with a less of the following with time endovascular ist, but the mTICl es.129,130 All rates achieved. als with less	American Heart Stroke Association Recommendation revised from 2015

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
12. The use of mechanical thrombectomy devices other than stent retrievers as first-line devices for mechanical thrombectomy may be reasonable in some circumstances, but stent retrievers remain the first choice.	IIb	B-R	Recommendation revised from 2015 Endovascular.
The ASTER trial (Contact Aspiration vs Stent Retriever for Successful Revascu aspiration technique and the standard stent retriever technique as first-line E within 6 hours among patients with acute anterior circulation ischemic stroke patients with successful revascularization at the end of all interventions was aspiration group versus 83.1% (n=157) in the stent retriever group (0R, 1.20 difference, 2.4%; 95% Cl, -5.4 to 9.7%). The secondary clinical end point of achieved by 82 of 181 (45.3%) in the contact aspiration group versus 91 of 1 group (0R, 0.83; 95% Cl, 0.54–1.26; $P\!=\!0.38$). The primary end point in ASTE revascularization after all interventions), and the trial was not powered to det clinically important difference between groups. Given its superiority design to primary end point, this trial was not designed to establish noninferiority. 178	NT for successful read LVO. The pro 85.4% (n=164) in ; 95% CI, 0.68-2.1 mRS score of 0 to 82 (50.0%) in the ER was technical (sect a smaller yet p	revascularization portion of the contact 10; P=0.53; 2 at 90 days was stent retriever successful potentially	See Table XXIII in online Data Supplement 1.
13. The use of a proximal balloon guide catheter or a large-bore distal-access catheter, rather than a cervical guide catheter alone, in conjunction with stent retrievers may be beneficial. Future studies should examine which systems provide the highest recanalization rates with the lowest risk for nontarget embolization.	lla	C-LD	Recommendation and Class unchanged from 2015 Endovascular. LOE amended to conforn with ACC/AHA 2015 Recommendation Classification System.
14. Use of salvage technical adjuncts including intra-arterial thrombolysis may be reasonable to achieve mTICl 2b/3 angiographic results.	llb	C-LD	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement for original wording.
Intra-arterial lytic therapy played a limited role in the recent endovascular trial not initial treatment. In MR CLEAN, the EVT method was at the discretion of or with alternative stent retrievers to Trevo and Solitaire or intra-arterial alteplase patients were treated with intra-arterial alteplase alone. Twenty-four of 233 (1 modality. Treatment method had no impact on outcomes in this trial. ¹⁷⁹ In THF to a maximum dose of 0.3 mg/kg and allowed to establish goal reperfusion, o was attempted. A mean dose of 8.8 mg was administered in 15 of 141 patien thrombectomy (11%). There was no effect on outcomes compared with mech	perator, with 40 of a e. Details are not a 0.3%) had treatme ACE, an intra-arter any after mechanicats ts receiving mecha	233 treated vailable, but no ent with a second rial lytic was used al thrombectomy inical	American Heart Stroke Association Association
15. EVT of tandem occlusions (both extracranial and intracranial occlusions) at the time of thrombectomy may be reasonable.	llb	B-R	Recommendation revised from 2015 Endovascular.
Tandem occlusions were considered in recent endovascular trials that showed benefit of mechanical thrombectomy over medical management alone. In the HERMES meta-analysis, 122 of 1254 tandem occlusions (RR, 1.81; 95% Cl, 0.96–3.4) and 1132 of 1254 nontandem occlusions (RR, 1.71; 95% Cl, 1.40–2.09) were reported compared with medical management. The THRACE, 24 of 196 tandem occlusions (RR, 1.82; 95% Cl, 0.55–6.07) and 172 of 196 nontandem occlusions (RR, 1.34; 95% Cl, 0.87–2.07) were treated compared with IV alteplase alone. The HERMES, there is heterogeneity of treatment methods directed to the proximal extracranial carotid occlusion (no revascularization of the proximal lesion versus angioplasty versus stenting). Multiple retrospective reports detail the technical success of EVT for tandem occlusions but do not provide specifics on comparative approaches. No conclusions about the optimum treatment approach for patients with tandem occlusions are therefore possible.			See Tables XXIII and XLI in online Data Supplement 1.
16. It is reasonable to select an anesthetic technique during endovascular therapy for AIS on the basis of individualized assessment of patient risk factors, technical performance of the procedure, and other clinical characteristics. Further randomized trial data are needed.	lla	B-R	Recommendation revised from 2015 Endovascular.
Conscious sedation (CS) was widely used in the recent endovascular trials (9 PRIME) with no clear positive or negative impact on outcome. In MR CLEAN, (95% CI, 31–86) decrease in treatment effect of general anesthesia (GA) corr of 67 patients receiving GA and 43 of 69 patients receiving CS achieved TICI on outcome. ¹⁰⁶ Thirty-five of 67 patients with GA and 36 of 74 with CS had m Although several retrospective studies suggest that GA produces worsening of limited prospective randomized data. Two small (≤150 participants) single-cr	post hoc analysis s pared with CS. ¹⁸⁰ l 2b/3 (<i>P</i> =0.059) wi PRS scores of 0 to 2 of functional outcor	showed a 51% In THRACE, 51 th no impact 2 at 90 days. mes, there are	See Tables XLII and XLIII in online Data Supplement 1.

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
17. In patients who undergo mechanical thrombectomy, it is reasonable to maintain the BP ≤180/105 mm Hg during and for 24 hours after the procedure.	lla	B-NR	New recommendation.
18. In patients who undergo mechanical thrombectomy with successful reperfusion, it might be reasonable to maintain BP at a level <180/105 mm Hg.	llb	B-NR	New recommendation.
There are very limited data to guide BP therapy during and after the procedur mechanical thrombectomy. RCT data on optimal BP management approaches The vast majority of patients enrolled in under 6-hour RCTs received IV alteplications at the stipulated management according to local guidelines with BP \leq 80/105 during procedure for these participants. Two trial protocols provided additional recorning states that systolic BP \geq 150 mm Hg is probably useful in promoting and keep while the artery remains occluded and that controlling BP once reperfusion has for a normal BP for that individual is sensible. Labetalol or an IV β -blocker surecommended. 104 The DAWN protocol recommends maintaining systolic BP $<$ subjects who are reperfused after mechanical thrombectomy (defined as ach territory reperfusion). 183	See Table XXIII in online Data Supplement 1.		

3.8. Other EVTs

3.8. Other EVTs	COR	LOE	New, Revised, or Unchanged
Initial treatment with intra-arterial thrombolysis is beneficial for carefully selected patients with major ischemic strokes of <6 hours' duration caused by occlusions of the MCA.	ı	B-R	Recommendation and Class unchanged from 2015 Endovascular. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System.
2. Regarding the previous recommendation about intra-arterial thrombolysis, these data are derived from clinical trials that no longer reflect current practice, including the use of fibrinolytic drugs that are not available. A clinically beneficial dose of intra-arterial alteplase is not established, and alteplase does not have US Food and Drug Administration approval for intra-arterial use. As a consequence, mechanical thrombectomy with stent retrievers is recommended over intra-arterial thrombolysis as first-line therapy.	ı	С-ЕО	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Intra-arterial thrombolysis initiated within 6 hours of stroke onset in carefully selected patients who have contraindications to the use of IV alteplase might be considered, but the consequences are unknown.	llb	C-E0	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

3.9. Antiplatelet Treatment

3.9. Antiplatelet Treatment	COR	LOE	New, Revised, or Unchanged
Administration of aspirin is recommended in patients with AIS within 24 to 48 hours after onset. For those treated with IV alteplase, aspirin administration is generally delayed until 24 hours later but might be considered in the presence of concomitant conditions for which such treatment given in the absence of IV alteplase is known to provide substantial benefit or withholding such treatment is known to cause substantial risk.	ı	А	Recommendation revised from 2013 AIS Guidelines.
The safety and benefit of aspirin in the treatment of patients with AlS were establ administering doses between 160 and 300 mg. 184,185 This has recently been conf of aspirin trials. 186 In patients unsafe or unable to swallow, rectal or nasogastric a Limited data exist on the use of alternative antiplatelet agents in the treatment of contraindication to aspirin, administering alternative antiplatelet agents may be re of consecutive ischemic stroke patients admitted to a single center in Seoul, Soul hemorrhage with early initiation of antiplatelet or anticoagulant therapy (<24 hou with initiation >24 hours. However, this study may have been subject to selection of antiplatelet therapy or anticoagulation should be made on an individual level, b recommendation was modified from the previous guideline to remove the spe dose is 325 mg," because previous clinical trials supporting its use for AIS inc	See Table XXXVIII in online Data Supplement 1.		

3.9. Antiplatelet Treatment (Continued)	COR	LOE	New, Revised, or Unchanged
Aspirin is not recommended as a substitute for acute stroke treatment in patients who are otherwise eligible for IV alteplase or mechanical thrombectomy.	III: No Benefit	B-R	Recommendation revised from 2013 AIS Guidelines.
Recommendation was modified to eliminate wording about "acute intervention to specify that aspirin is a less effective substitute for the treatment of AIS in for IV alteplase or mechanical thrombectomy.	,		
The efficacy of IV tirofiban and eptifibatide is not well established. Further clinical trials are needed.	llb	B-R	Recommendation revised from 2013 AIS Guidelines.
Prospective, randomized, open-label phase II trials of tirofiban ¹⁸⁷ and eptifibat treatment in patients with AIS. Single-arm studies of eptifibatide as adjunctive ongoing RCTs to establish safety and efficacy. 189,190			See Table XLIV in online Data Supplement 1
4. The administration of other glycoprotein Ilb/Illa receptor antagonists, including abciximab, in the treatment of AIS is potentially harmful and should not be performed. Further research testing the safety and efficacy of these medications in patients with AIS is required.	III: Harm	B-R	Recommendation revised from 2013 AIS Guidelines.
A recent Cochrane review of IV glycoprotein Ilb/Illa receptor antagonists in the agents are associated with a significant risk of ICH without a measurable imp The majority of trial data apply to abciximab, which was studied in the AbEST Safety of Abciximab in Patients With Acute Ischemic Stroke). The phase III tria an unfavorable risk-benefit analysis. 192	orovement in death □T trial (A Study of	or disability. ¹⁹¹ Effectiveness and	See Table XLV in online Data Supplement 1.
5. In patients presenting with minor stroke, treatment for 21 days with dual antiplatelet therapy (aspirin and clopidogrel) begun within 24 hours can be beneficial for early secondary stroke prevention for a period of up to 90 days from symptom onset.	lla	B-R	New recommendation.
The CHANCE trial (Clopidogrel in High-Risk Patients With Acute Nondisabling randomized, double-blind, placebo-controlled trial conducted in China to stuc antiplatelet therapy begun within 24 hours, clopidogrel plus aspirin for 21 day 90 days, in patients with minor stroke (NIHSS score \leq 3) or high-risk TIA (ABC Features, Duration, Diabetes] score \geq 4). The primary outcome of recurrent st hemorrhagic) favored dual antiplatelet therapy over aspirin alone (hazard ratio P <0.001). Parameter of 1-year outcomes found a durable treatm stroke prevention was only significantly beneficial in the first 90 days. Parameter of 1-year outcomes found a large phase III mul Canada, Europe, and Australia is ongoing.	See Table XI.V in online Data Supplement 1. American Heart Association Association		
6. Ticagrelor is not recommended (over aspirin) in the acute treatment of patients with minor stroke.	III: No Benefit	B-R	New recommendation.
The recently completed SOCRATES trial (Acute Stroke or Transient Ischaem or Ticagrelor and Patient Outcomes) was a randomized, double-blind, placet versus aspirin begun within 24 hours in patients with minor stroke (NIHSS some Blood Pressure, Clinical Features, Duration, Diabetes] score ≥4). With a prima composite end point of stroke, myocardial infarction (MI), or death up to 90 of be superior to aspirin (HR, 0.89; 95% CI, 0.78–1.01; P =0.07). However, be safety differences in the 2 groups, ticagrelor may be a reasonable alternative contraindication to aspirin.	See Table XLV in online Data Supplement 1.		

3.10. Anticoagulants

3.10. Anticoagulants	COR	LOE	New, Revised, or Unchanged
Urgent anticoagulation, with the goal of preventing early recurrent stroke, halting neurological worsening, or improving outcomes after AIS, is not recommended for treatment of patients with AIS.	III: No Benefit	А	Recommendation and LOE unchanged from 2013 AIS Guidelines. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
Further support for this unchanged recommendation from the 2013 AlS Guidelines is provided by 2 updated meta-analyses that confirm the lack of benefit of urgent anticoagulation. 197,198 An additional study, not included in these meta-analyses, investigated the efficacy of LMWH compared with aspirin in preventing early neurological deterioration in an unblinded RCT. Although there was a statistically significant difference in early neurological deterioration at 10 days after admission (LMWH, 27 [3.95%] versus aspirin, 81 [11.82%]; P<0.001), there was no difference in 6-month mRS score of 0 to 2 (LMWH, 64.2% versus aspirin, 6.52%; P=0.33). 199			See Table XLV in online Data Supplement 1.

3.10. Anticoagulants (Continued)	COR	LOE	New, Revised, or Unchanged
2. The usefulness of urgent anticoagulation in patients with severe stenosis of an internal carotid artery ipsilateral to an ischemic stroke is not well established.	llb	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. The safety and usefulness of short-term anticoagulation for nonocclusive, extracranial intraluminal thrombus in the setting of AIS are not well established.	llb	C-LD	New recommendation.
The optimal medical management of patients with AIS and radiologic evidence thrombus (eg, cervical carotid, vertebrobasilar arteries) remains uncertain. So have suggested the safety of short-term IV heparin or LMWH in this setting, 20 to establish safety and efficacy.	See Table XLVII in online Data Supplement 1.		
4. At present, the usefulness of argatroban, dabigatran, or other thrombin inhibitors for the treatment of patients with AIS is not well established. Further clinical trials are needed.	llb	B-R	Recommendation revised from 2013 AIS Guidelines.
Several observational studies have demonstrated the safety and feasibility of treating AIS with thrombin inhibitors, as either a single or an adjunct therapy to alteplase. The oral direct thrombin inhibitor dabigatran was studied in 53 patients with TIA or minor stroke (NIHSS score ≤3) with no occurrences of sICH up to 30 days. ²⁰¹ ARTSS (Argatroban With Recombinant Tissue Plasminogen Activator for Acute Stroke)-1 was an open label, pilot safety study of argatroban infusion plus IV alteplase in 65 patients with complete or partially occlusive thrombus diagnosed by transcranial Doppler. ²⁰⁵ In the ARTSS-2 phase II study, patients with AIS treated with alteplase (n=90) were randomized to receive placebo or argatroban (100-µg/kg bolus), followed by infusion of either 1 (low dose) or 3 (high dose) µg/kg per minute for 48 hours. Rates of sICH were similar among the control, low-dose, and high-dose arms: 3 of 29 (10%), 4 of 30 (13%), and 2 of 31 (7%), respectively. ²⁰⁶			See Table XLVII in online Data Supplement 1.
5. The safety and usefulness of factor Xa inhibitors in the treatment of AIS are not well established. Further clinical trials are needed.	llb	C-LD	New recommendation.
Limited data exist on the use of factor Xa inhibitors (eg, rivaroxaban, apixaban, edoxaban) in the acute treatment of patients with ischemic stroke. ²⁰⁷ Several prospective observational studies and early-phase trials are ongoing (NCT02279940, NCT02042534, NCT02283294).			See Table LXXVII in online Data Supplement 1. Heart Stroke Association

3.11. Volume Expansion/Hemodilution, Vasodilators, and Hemodynamic Augmentation

3.11. Volume Expansion/Hemodilution, Vasodilators, and Hemodynamic Augmentation	COR	LOE	New, Revised, or Unchanged
Hemodilution by volume expansion is not recommended for treatment of patients with AIS.	III: No Benefit	А	Recommendation and LOE unchanged from 2013 AIS Guidelines. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
A recent Cochrane review of 4174 participants from multiple RCTs confirmed recommendation that hemodilution therapy, including varying methods of volvenesection, demonstrates no significant benefit in patients with AIS. ²⁰⁸	See Table XLVIII in online Data Supplement 1.		
2. The administration of high-dose albumin is not recommended for the treatment of patients with AIS.	III: No Benefit	Α	Recommendation revised from 2013 AIS Guidelines.
The ALIAS (Albumin in Acute Ischemic Stroke) part II trial of high-dose album in patients with AIS was terminated early for futility. ²⁰⁹ Combined analysis of demonstrated no difference between groups in 90-day disability. ²¹⁰	See Table XLVIII in online Data Supplement 1.		
3. The administration of vasodilatory agents, such as pentoxifylline, is not recommended for treatment of patients with AIS.	III: No Benefit	А	Recommendation and LOE unchanged from 2013 AIS Guidelines. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. At present, use of devices to augment cerebral blood flow for the treatment of patients with AIS is not well established. These devices should be used only in the setting of clinical trials.	llb	B-R	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

3.12. Neuroprotective Agents

3.12. Neuroprotective Agents	COR	LOE	New, Revised, or Unchanged
At present, no pharmacological or non-pharmacological treatments with putative neuroprotective actions have demonstrated efficacy in improving outcomes after ischemic stroke, and therefore, other neuroprotective agents are not recommended.	III: No Benefit	А	Recommendation reworded for clarity from 2013 AIS Guidelines. LOE unchanged. COR amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Recent trials of both pharmacological and nonpharmacological neuroprotective treatments in AIS have been negative. The FAST-MAG trial (Field Administration of Stroke Therapy—Magnesium) of hyperacute magnesium infusion was the first acute stroke neuroprotection drug trial to enroll participants during ambulance transport, but no differences were seen between the intervention group and placebo control subjects. ¹⁰³ A recent Cochrane review of neuroprotection trials in AIS further confirms the recommendation of no benefit with previously studied interventions to date. ¹¹⁴			See Table XLVIII in online Data Supplement 1.

3.13. Emergency CEA/Carotid Angioplasty and Stenting Without Intracranial Clot

3.13. Emergency CEA/Carotid Angioplasty and Stenting Without Intracranial Clot	COR	LOE	New, Revised, or Unchanged
The usefulness of emergent or urgent CEA when clinical indicators or brain imaging suggests a small infarct core with large territory at risk (eg, penumbra), compromised by inadequate flow from a critical carotid stenosis or occlusion, or in the case of acute neurological deficit after CEA, in which acute thrombosis of the surgical site is suspected, is not well established.	llb	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System.
In patients with unstable neurological status (eg, stroke-in-evolution), the efficacy of emergency or urgent CEA is not well established.	lib	B-NR	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

3.14. Other

5.14. Otilei	OON	LOL	ivev, neviseu, or onenangeu
Transcranial near-infrared laser therapy is not recommended for the treatment of AIS.	III: No Benefit	B-R	Recommendation revised from 2013 AIS Guidelines.
Previous data suggested that transcranial near-infrared laser therapy for s intervention through data published in NEST (Neurothera Effectiveness and Such basic science and preclinical data culminated in the NEST-3 trial, wh trial investigated the use of transcranial laser therapy for the treatment of and 24 hours of stroke onset in patients with moderate stroke (NIHSS scor alteplase. 214 This study was terminated because of futility after analysis of benefit of transcranial laser therapy over sham treatment. There is current laser therapy is beneficial in the treatment of ischemic stroke.	Safety Trial)-1 and ich was a prospectischemic stroke be e 7–17) who did not the first 566 patier	d NEST-2. ²¹¹⁻²¹³ tive RCT. This tween 4.5 ot receive IV nts found no	See Table XLIX in online Data Supplement 1.

4. In-Hospital Management of AIS: General Supportive Care

4.1. Stroke Units

4.1. Stroke Units	COR	LOE	New, Revised, or Unchanged
The use of comprehensive specialized stroke care (stroke units) that incorporates rehabilitation is recommended.	1	A	Recommendation unchanged from 2013 AIS Guidelines.
The use of standardized stroke care order sets is recommended to improve general management.	ı	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.2. Supplemental Oxygen

4.2. Supplemental Oxygen	COR	LOE	New, Revised, or Unchanged
Airway support and ventilatory assistance are recommended for the treatment of patients with acute stroke who have decreased consciousness or who have bulbar dysfunction that causes compromise of the airway.	ı	C-EO	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. Supplemental oxygen should be provided to maintain oxygen saturation >94%.	1	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. Supplemental oxygen is not recommended in nonhypoxic patients hospitalized with AIS.	III: No Benefit	B-R	Recommendation reworded for clarity from 2013 AlS Guidelines. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Additional support for this unchanged recommendation from the 2013 AlS Guidelines is provided by an RCT of 8003 participants randomized within 24 hours of admission. There was no benefit on functional outcome at 90 days of oxygen by nasal cannula at 2 L/min (baseline O_2 saturation >93%) or 3 L/min (baseline O_2 saturation O_3 0 continuously for 72 hours or nocturnally for 3 nights. 113			See Table XXVI in online Data Supplement 1.

4.3. Blood Pressure

4.3. Blood Pressure	COR	L0E	New, Revised, or Unchanged
1. In patients with AIS, early treatment of hypertension is indicated when required by comorbid conditions (eg, concomitant acute coronary event, acute heart failure, aortic dissection, postthrombolysis sICH, or preeclampsia/eclampsia). Lowering BP initially by 15% is probably safe.	1	C-EO	New recommendation. American Heart Stroke Association
Patients with AIS can present with severe acute comorbidities that demand emergency BP reduction to prevent serious complications. However, it is important to keep in mind that excessive BP lowering can sometimes worsen cerebral ischemia. ²¹⁵ Ideal management in these situations should be individualized, but in general, initial BP reduction by 15% is a reasonable goal.			
2. In patients with BP <220/120 mm Hg who did not receive IV alteplase or EVT and do not have a comorbid condition requiring acute antihypertensive treatment, initiating or reinitiating treatment of hypertension within the first 48 to 72 hours after an AIS is not effective to prevent death or dependency.	III: No Benefit	Α	Recommendation revised from 2013 AIS Guidelines.
Multiple RCTs and meta-analyses of these trials ²¹⁶⁻²³⁰ have consistently shown that initiating or reinitiating antihypertensive therapy within the first 48 to 72 hours after an AlS is safe but this strategy is not associated with improved mortality or functional outcomes. However, none of these trials were designed to study BP reduction within the first 6 hours after stroke, and all excluded patients with extreme hypertension or coexistent indications for acute BP reduction.			See Table L in online Data Supplement 1.
3. In patients with BP ≥220/120 mm Hg who did not receive IV alteplase or EVT and have no comorbid conditions requiring acute antihypertensive treatment, the benefit of initiating or reinitiating treatment of hypertension within the first 48 to 72 hours is uncertain. It might be reasonable to lower BP by 15% during the first 24 hours after onset of stroke.	llb	C-EO	New recommendation.
Patients with severe hypertension (most commonly >220/120 mm Hg) were excluded from clinical trials evaluating BP lowering after AIS. ^{218,219,222,223,225,228} BP reduction has been traditionally advised for these cases, but the benefit of such treatment in the absence of comorbid conditions that may be acutely exacerbated by severe hypertension has not been formally studied.			See Table L in online Data Supplement 1.
Although no solid data are available to guide selection of medications for BP lowering after AIS, the antihypertensive medications and doses included in Table 5 are reasonable options.	lla	C-EO	Recommendation/table revised from 2013 AIS Guidelines.
There are no data to show that 1 strategy to lower BP is better than another after AIS. The medications and doses in Table 5 are all reasonable options.			

4.3. Blood Pressure (Continued)	COR	LOE	New, Revised, or Unchanged
5. Starting or restarting antihypertensive therapy during hospitalization in patients with BP >140/90 mm Hg who are neurologically stable is safe and is reasonable to improve long-term BP control unless contraindicated.	lla	B-R	New recommendation.
Starting or restarting antihypertensive medications has been shown to be associated with improved control of the BP after discharge in 2 trials. 223,225 Therefore, it is reasonable to start or restart antihypertensive medications in the hospital when the patient remains hypertensive and is neurologically stable. Studies evaluating this question included only patients with previous diagnosis of hypertension ²²³ or enrolled mostly patients with previous hypertension. 425 However, because hypertension is not uncommonly first diagnosed during the hospitalization for stroke, it is reasonable to apply this recommendation also to patients without preexistent hypertension.			See Table L in online Data Supplement 1.
Hypotension and hypovolemia should be corrected to maintain systemic perfusion levels necessary to support organ function.	New recommendation.		
The BP level that should be maintained in patients with AIS to ensure the best outcome is not known. Some observational studies show an association between worse outcomes and lower BPs, whereas others do not. ^{117–124} No studies address the treatment of low BP in patients with stroke. In a systematic analysis of 12 studies comparing colloids with crystalloids, the odds of death or dependence were similar. Clinically important benefits or harms could not be excluded. There are no data to guide volume and duration of parenteral fluid delivery. ¹²⁵ No studies have compared different isotonic fluids.		See Table XXVIII in online Data Supplement 1.	

4.4. Temperature

4.4. Temperature	COR	LOE	New, Revised, or Unchanged
Sources of hyperthermia (temperature >38°C) should be identified and treated. Antipyretic medications should be administered to lower temperature in hyperthermic patients with stroke.	ı	С-ЕО	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Additional support for this recommendation unchanged from the 2013 AIS Guidelines is provided by a large retrospective cohort study conducted from 2005 to 2013 of patients admitted to intensive care units in Australia, New Zealand, and the United Kingdom. Peak temperature in the first 24 hours <37°C and >39°C was associated with an increased risk of in-hospital death compared with normothermia in 9366 patients with AIS. ¹³⁴			See Jables XXX and XXXI in online Data Supplement 1-sociation
The benefit of induced hypothermia for treating patients with ischemic stroke is not well established. Hypothermia should be offered only in the context of ongoing clinical trials.	llb	B-R	Recommendation revised from 2013 AIS Guidelines.
Hypothermia is a promising neuroprotective strategy, but its benefit in patients with AIS has not been proven. Most studies suggest that induction of hypothermia is associated with an increase in the risk of infection, including pneumonia. ^{135–138} Therapeutic hypothermia should be undertaken only in the context of a clinical trial.			See Tables XXXII and XXXIII in online Data Supplement 1.

4.5. Glucose

4.5. Glucose	COR	LOE	New, Revised, or Unchanged
Evidence indicates that persistent in-hospital hyperglycemia during the first 24 hours after AIS is associated with worse outcomes than normoglycemia, and thus, it is reasonable to treat hyperglycemia to achieve blood glucose levels in a range of 140 to 180 mg/dL and to closely monitor to prevent hypoglycemia.	lla	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. Hypoglycemia (blood glucose <60 mg/dL) should be treated in patients with AIS.	1	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.6. Dysphagia Screening

4.6. Dysphagia Screening	COR	LOE	New, Revised, or Unchanged
Dysphagia screening before the patient begins eating, drinking, or receiving oral medications is reasonable to identify patients at increased risk for aspiration.	lla	C-LD	New recommendation.
Dysphagia, a common (37%–78%) complication of acute stroke, is a risk factor for aspiration pneumonia and is associated with higher mortality and worse patient outcomes. The evidence review committee completed a systematic review to determine whether dysphagia screening, compared with no screening or usual care, decreased outcomes of pneumonia, death, or dependency. 4.231–233 There were insufficient data to determine whether implementation of a dysphagia screening protocol reduces the risk of death or dependency. However, insufficient evidence does not mean that dysphagia screening is ineffective. Joundi et al ²³⁴ determined that patients who failed dysphagia screening were older, had a higher rate of multiple comorbidities (including prior stroke and dementia), more often came from a long-term care facility, more often presented with weakness and speech deficits, had a lower level of consciousness, and had a higher stroke severity. Patients who failed dysphagia screening were more likely to develop pneumonia (13.1% versus 1.9%), to have more severe disability (52.4% versus 18.0%), and to be discharged to a long-term care institution (14.0% versus 4.3%). Early dysphagia screening is reasonable to identify patients at higher risk for adverse outcomes.			See Tables LI and LII in online Data Supplement 1.
It is reasonable for dysphagia screening to be performed by a speech-language pathologist or other trained healthcare provider.	lla	C-LD	Recommendation reworded for clarity from 2016 Rehab Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
An instrumental evaluation is reasonable for those patients suspected of aspiration to verify the presence/absence of aspiration and to determine the physiological reasons for the dysphagia to guide the treatment plan.	lla	B-NR	Recommendation wording modified from 2016 Rehab Guidelines to match Class lla stratifications. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. It is not well established which instrument to choose for evaluation of swallowing with sensory testing, but the choice may be based on instrument availability or other considerations (ie, fiberoptic endoscopic evaluation of swallowing, videofluoroscopy, fiberoptic endoscopic evaluation).	llb	C-LD	Recommendation reworded for clarity from 2016 Rehab Guidelines: Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

4.7. Nutrition

4.7. Nutrition	COR	LOE	New, Revised, or Unchanged
Enteral diet should be started within 7 days of admission after an acute stroke.	1	B-R	New recommendation.
2. For patients with dysphagia, it is reasonable to initially use nasogastric tubes for feeding in the early phase of stroke (starting within the first 7 days) and to place percutaneous gastrostomy tubes in patients with longer anticipated persistent inability to swallow safely (>2-3 weeks).	lla	С-ЕО	New recommendation.
The FOOD RCTs (Feed Or Ordinary Diet; phases I–III), completed in 131 hospitals in 18 countries, ²³⁵ showed that supplemented diet was associated with an absolute reduction in risk of death of 0.7% and that early tube feeding (within 7 days of admission) was associated with an absolute reduction in risk of death of 5.8% and a reduction in death or poor outcomes of 1.2%. When nasogastric feeding and percutaneous endoscopic gastrostomy feeding were compared, percutaneous endoscopic gastrostomy feeding was associated with an increase in absolute risk of death of 1.0% and an increased risk of death or poor outcomes of 7.8%. The conclusion was that stroke patients should be started on enteral diet within the first 7 days of admission. ²³⁵ In 2012, a Cochrane review analyzed 33 RCTs involving 6779 patients to assess the intervention for dysphagia treatment, feeding strategies and timing (early [within 7 days] versus later), fluid supplementation, and the effects of nutritional supplementation on acute and subacute stroke patients. ²³⁶ The conclusion was that, although data remained insufficient to offer definitive answers, available information suggested that percutaneous endoscopic gastrostomy feeding and nasogastric tube feeding do not differ in terms of case fatality, death, or dependency, but percutaneous endoscopic gastrostomy is associated with fewer treatment			See Table LIII in online Data Supplement 1.

4.7. Nutrition (Continued)	COR	L0E	New, Revised, or Unchanged
3. Nutritional supplements are reasonable to consider for patients who are malnourished or at risk of malnourishment.	lla	B-R	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. Implementing oral hygiene protocols to reduce the risk of pneumonia after stroke may be reasonable.	llb	B-NR	New recommendation.
patients with acute stroke, Sørensen et al ²³⁷ showed that intervention with sand diet and standardized oral hygiene with antibacterial mouth rinse with a (7% versus 28%) compared with a historical control group in which patients for dysphagia within 24 hours and received unsystematic and arbitrary oral In this experimental design, the efficacy of the standardized oral hygiene pocould not be separated from the standardized dysphagia screening and diet historic nature of the control group, it is possible that other changes in care the historical control subjects and the intervention group might have affected pneumonia. A Cochrane review that included 3 studies found that oral care and placebo gel reduced the incidence of pneumonia in the intervental ²³⁹ conducted a cohort study comparing rates of pneumonia in hospitalizer	Supplement 1.		

4.8. Deep Vein Thrombosis Prophylaxis

0.51-0.98; *P*=0.041).

4.8. Deep Vein Thrombosis Prophylaxis	COR	LOE	New, Revised, or Unchanged
In immobile stroke patients without contraindications, intermittent pneumatic compression (IPC) in addition to routine care (aspirin and hydration) is recommended over routine care to reduce the risk of deep vein thrombosis (DVT).	-	B-R	Recommendation revised from 2016 Rehab Guidelines. Stroke Association
CLOTS (Clots in Legs or stockings After Stroke) 3 was a multicenter trial enrol in the United Kingdom and comparing the use of IPC with routine care to not stroke patients for venous thromboembolism prophylaxis. Eligible patients we acute stroke and could not mobilize to the toilet without the help of another past the use of aspirin for nonhemorrhagic stroke, hydration, and possible comof the patients received prophylactic or full-dose heparin or LMWH, but these between both groups. After the exclusion of 323 patients who died before an had no screening, the primary outcome of DVT occurred in 122 of 1267 IPC p174 of 1245 no-IPC participants (14.0%), giving an adjusted OR of 0.65 (95% patients treated with IPC, there was a statistically significant improvement in 95% Cl, 0.73–0.99; P =0.042) but no improvement in disability. Skin breaks v (3.1% versus 1.4%; P =0.002). Contraindications to IPC include leg condition severe edema, venous stasis, severe peripheral vascular disease, postoperat as existing swelling or other signs of an existing DVT.403 A meta-analysis includificant improvement these results.240	See Table LVI in online Data Supplement 1.		
2. The benefit of prophylactic-dose subcutaneous heparin (unfractionated heparin [UFH] or LMWH) in immobile patients with AIS is not well established.	llb	A	New recommendation.
The most recent and comprehensive meta-analysis of pharmacological interverse prophylaxis in AlS included 1 very large trial (n=14578) and 4 small trials of heparinoids, and 1 trial of a heparinoid. Prophylactic anticoagulants were not effect on mortality or functional status at final follow-up. There were statis in symptomatic pulmonary embolisms (OR, 0.69; 95% CI, 0.49–0.98) and asymptomatic (OR, 0.21; 95% CI, 0.15–0.29). There were statistically signiff intracranial hemorrhage (OR, 1.68; 95% CI, 1.11–2.55) and symptomatic extra 95% CI, 1.0–2.75). There may be a subgroup of patients in whom the benefthromboembolism are high enough to offset the increased risks of intracranial	See Table LVI in online Data Supplement 1.		

4.8. Deep Vein Thrombosis Prophylaxis (Continued)	COR	LOE	New, Revised, or Unchanged
When prophylactic anticoagulation is used, the benefit of prophylactic-dose LMWH over prophylactic-dose UFH is uncertain.	IIb	B-R	New recommendation.
The most recent and comprehensive meta-analysis comparing LMWH or hep thromboembolism prophylaxis in AlS included 1 large trial (n=1762) and 2 sr UFH and 4 small trials comparing heparinoids with UFH. There were no signif for LMWH/heparinoids compared with UFH. The use of LMWH/heparinoid v significant reduction in DVTs (OR, 0.55; 95% Cl, 0.44–0.70), which were more of a greater risk of major extracranial hemorrhages (OR, 3.79; 95% Cl, 1.30–once a day and thus is more convenient for nurses and comfortable for patie bleeding risk in elderly patients with renal impairment are disadvantages of L	See Table LVI in online Data Supplement 1.		
In ischemic stroke, elastic compression stockings should not be used.	III: Harm	B-R	Recommendation wording modified from 2016 Rehab Guidelines to match Class III stratifications. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.9. Depression Screening

4.9. Depression Screening	COR	LOE	New, Revised, or Unchanged
Administration of a structured depression inventory is recommended to routinely screen for poststroke depression, but the optimal timing of screening is uncertain.	ı	B-NR	Recommendation revised from 2016 Rehab Guidelines.
A meta-analysis of studies assessing poststroke depression screening tools (inventories with high sensitivity for detecting poststroke depression. ²⁴¹ Howe determine the optimal screening method and timing to diagnose and treat po	See Table LVII in online Data Supplement 1.		
2. Patients diagnosed with poststroke depression should be treated with antidepressants in the absence of contraindications and closely monitored to verify effectiveness.	ı	B-R	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.10. Other

4.10. Other	COR	LOE	New, Revised, or Unchanged
Routine use of prophylactic antibiotics has not been shown to be beneficial.	III: No Benefit	B-R	Recommendation unchanged from 2013 AIS Guidelines. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Routine placement of indwelling bladder catheters should not be performed because of the associated risk of catheter-associated urinary tract infections.	III: Harm	C-LD	Recommendation wording modified from 2013 AIS Guidelines to match Class III stratifications. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
During hospitalization and inpatient rehabilitation, regular skin assessments are recommended with objective scales of risk such as the Braden scale.	I	C-LD	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
It is recommended to minimize or eliminate skin friction, to minimize skin pressure, to provide appropriate support surfaces, to avoid excessive moisture, and to maintain adequate nutrition and hydration to prevent skin breakdown. Regular turning, good skin hygiene, and use of specialized mattresses, wheelchair cushions, and seating are recommended until mobility returns.	1	C-LD	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
5. It is reasonable for patients and families with stroke to be directed to palliative care resources as appropriate. Caregivers should ascertain and include patient-centered preferences in decision making, especially during prognosis formation and considering interventions or limitations in care.	lla	C-EO	New recommendation.
The AHA scientific statement for palliative care in stroke ¹⁰ outlines, in detail, a nu for patients with AIS. The consensus is that patient- and family-centered care, of survivors and family members while preserving the dignity of patients, is the consultations, educational resources, and other aids should be identified in or			

4.11. Rehabilitation

4.11. Rehabilitation	COR	LOE	New, Revised, or Unchanged
It is recommended that early rehabilitation for hospitalized stroke patients be provided in environments with organized, interprofessional stroke care.	T	Α	Recommendation unchanged from 2016 Rehab Guidelines.
2. It is recommended that stroke survivors receive rehabilitation at an intensity commensurate with anticipated benefit and tolerance.	ı	B-NR	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. High-dose, very early mobilization within 24 hours of stroke onset should not be performed because it can reduce the odds of a favorable outcome at 3 months.	III: Harm	B-R	Recommendation wording modified from 2016 Rehab Guidelines to match Class III stratifications. LOE revised. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
care mobility. ²⁴³ High-dose mobilization protocol interventions included the fo within 24 hours of stroke onset whereas usual care typically was 24 hours af a focus on sitting, standing, and walking activity; and there were at least 3 ac compared with usual care. Favorable outcome at 3 months after stroke was a A total of 2104 patients were randomly assigned (1:1). The results of the RCT dose, very early mobilization group had less favorable outcomes (46% versus group: 8% versus 7% of patients died in the very early mobilization group and serious adverse event with high-dose, very early mobilization.	ter the onset of str dditional out-of-bed defined as an mRS showed that pations s 50%) than those	oke; there was d sessions score of 0 to 2. ents in the high- in the usual care	
4. It is recommended that all individuals with stroke be provided a formal assessment of their activities of daily living and instrumental activities of daily living, communication abilities, and functional mobility before discharge from acute care hospitalization and the findings be incorporated into the care transition and the discharge	1	B-NR	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
planning process.			American American
5. A functional assessment by a clinician with expertise in rehabilitation is recommended for patients with an acute stroke with residual functional deficits.	1	C-LD	

5. In-Hospital Management of AIS: Treatment of Acute Complications

5.1. Cerebellar and Cerebral Edema

5.1. Cerebellar and Cerebral Edema	COR	LOE	New, Revised, or Unchanged
Ventriculostomy is recommended in the treatment of obstructive hydrocephalus after a cerebellar infarct. Concomitant or subsequent decompressive craniectomy may or may not be necessary on the basis of factors such as infarct size, neurological condition, degree of brainstem compression, and effectiveness of medical management.	I	C-LD	Recommendation revised from 2014 Cerebral Edema.
Ventriculostomy is a well-recognized effective treatment for the management of acute obstructive hydrocephalus and is often effective in isolation in relieving symptoms, even among patients with acute ischemic cerebellar stroke. 244.245 Thus, in patients who develop symptoms of obstructive hydrocephalus from a cerebellar stroke, emergency ventriculostomy is a reasonable first step in the surgical management paradigm. If cerebrospinal diversion by ventriculostomy fails to improve neurological function, decompressive suboccipital craniectomy should be performed. 244-246 Although a risk of upward herniation exists with ventriculostomy alone, it can be minimized with conservative cerebrospinal fluid drainage or subsequent decompression if the cerebellar infarct causes significant edema or mass effect. 244,245			See Table LIX in online Data Supplement 1.

5.1. Cerebellar and Cerebral Edema (Continued)	COR	LOE	New, Revised, or Unchanged
Decompressive suboccipital craniectomy with dural expansion should be performed in patients with cerebellar infarction causing neurological deterioration from brainstem compression despite maximal medical therapy. When deemed safe and indicated, obstructive hydrocephalus should be treated concurrently with ventriculostomy.	I	B-NR	Recommendation revised from 2014 Cerebral Edema.
The data support decompressive cerebellar craniectomy for the manageme stroke with mass effect. 244-246 This surgery is indicated as a therapeutic introduction caused by cerebral edema as a result of cerebellar infarction with medical therapy or ventriculostomy in the setting of obstructive hydrocomes.	ervention in cases that cannot be oth	of neurological	See Table LIX in online Data Supplement 1.
3. When considering decompressive suboccipital craniectomy for cerebellar infarction, it may be reasonable to inform family members that the outcome after cerebellar infarct can be good after sub-occipital craniectomy.	llb	C-LD	Recommendation and Class unchanged from 2014 Cerebral Edema. Wording revised and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. Patients with large territorial supratentorial infarctions are at high risk for complicating brain edema and increased intracranial pressure. Discussion of care options and possible outcomes should take place quickly with patients (if possible) and caregivers. Medical professionals and caregivers should ascertain and include patient-centered preferences in shared decision making, especially during prognosis formation and considering interventions or limitations in care.	ı	С-ЕО	New recommendation.
Cerebral edema can cause serious and even life-threatening complications in supratentorial infarctions. Although less severe edema can be managed medically effective option for very severe cases; in such instances, timely decompressive mortality. 47 Nevertheless, there is evidence that persistent morbidity is commor about end-of-life and degree of treatment performed in the face of severe neu-	y, surgical treatment surgery has been a and individual pred	at may be the only shown to reduce existing decisions	
5. Patients with major infarctions are at high risk for complicating brain edema. Measures to lessen the risk of edema and close monitoring of the patient for signs of neurological worsening during the first days after stroke are recommended. Early transfer of patients at risk for malignant brain edema to an institution with neurosurgical expertise should be considered.	ı	C-LD	Recommendation revised from 2013 AIS Guidelines. LOE revised. American Heart Association Association
6. In patients ≤60 years of age with unilateral MCA infarctions who deteriorate neurologically within 48 hours despite medical therapy, decompressive craniectomy with dural expansion is reasonable because it reduces mortality by close to 50%, with 55% of the surgical survivors. achieving moderate disability (able to walk) or better (mRS score 2 or 3) and 18% achieving independence (mRS score 2) at 12 months.	lla	А	Recommendation revised from 2014 Cerebral Edema.
The pooled results of RCTs demonstrated significant reduction in mortality was performed within 48 hours of malignant MCA infarction in patients <60 reduction in mortality of 50% (95% Cl, 34–66) at 12 months. 247 These findin in the clinical trials in terms of inclusion and exclusion criteria, percent of M timing. 248,249 At 12 months, moderate disability (ability to walk) or better (mRS (22 of 51) of the total surgical group and 55% (22 of 40) of survivors compare the total nonsurgical group and 75% (9 of 12; P =0.318) of the nonsurgical sur (mRS score 2) was achieved in 14% (7 of 51) of the total surgical group and 1 with 2% (1 of 42) of the total nonsurgical group and 8% (1 of 12) of the nonsu	years of age, with gs were noted des CA territory involve score 2 or 3) was a d with 21% (9 of 4 vivors. At 12 mont 8% (7 of 40) of sur	an absolute risk spite differences ed, and surgical achieved in 43% 2; P=0.045) of hs, independence vivors compared	See Tables LIX and LX in online Data Supplement 1.
7. In patients >60 years of age with unilateral MCA infarctions who deteriorate neurologically within 48 hours despite medical therapy, decompressive craniectomy with dural expansion may be considered because it reduces mortality by close to 50%, with 11% of the surgical survivors achieving moderate disability (able to walk [mRS score 3]) and none achieving independence (mRS score ≤2) at 12 months.	llb	B-R	Recommendation revised from 2014 Cerebral Edema.
There is evidence that patients >60 years of age can have a reduction in m nonsurgical group versus 42% in the surgical group in DESTINY [Decompre of Malignant Infarction of the Middle Cerebral Artery] II) when decompressi infarction is performed within 48 hours of stroke onset. ^{248,249,251–255} However patients seem to be worse than those in patients <60 years of age. At 12 n to walk; mRS score 3) was achieved in 6% (3 of 47) of the total surgical groupared with 5% (3 of 22) of the total nonsurgical group and 20% (3 of 12 months, independence (mRS score ≤2) was not achieved by any survivo	See Tables LIX and LX in online Data Supplement 1.		

5.1. Cerebellar and Cerebral Edema (Continued)	COR	LOE	New, Revised, or Unchanged
Although the optimal trigger for decompressive craniectomy is unknown, it is reasonable to use a decrease in level of consciousness attributed to brain swelling as selection criteria.	lla	A	Recommendation, Class, and LOE unchanged from 2014 Cerebral Edema.
Use of osmotic therapy for patients with clinical deterioration from cerebral swelling associated with cerebral infarction is reasonable.	lla	C-LD	Recommendation reworded for clarity from 2014 Cerebral Edema. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
10. Use of brief moderate hyperventilation (Pco ₂ target 30–34 mm Hg) is a reasonable treatment for patients with acute severe neurological decline from brain swelling as a bridge to more definitive therapy.	lla	C-EO	New recommendation.
Hyperventilation is a very effective treatment to rapidly improve brain swelling cerebral vasoconstriction, which can worsen ischemia if the hypocapnia is surpreventilation should be induced rapidly but should be used as briefly as purply hypocapnia (<30 mm Hg).			
11. Hypothermia or barbiturates in the setting of ischemic cerebral or cerebellar swelling are not recommended.	III: No Benefit	B-R	Recommendation and LOE revised from 2014 Cerebral Edema. COR amended to conform with ACC/AHA 2015 Recommendation Classification System.
The data on the use of hypothermia and barbiturates for the management of data include only studies with small numbers of patients and unclear timing stroke onset. Hypothermia use has recently been shown to have no impact analysis of 6 RCTs. ²⁵⁷ Further research is recommended.	See Tables LIX and LX in online Data Supplement 1.		
12. Because of a lack of evidence of efficacy and the potential to increase the risk of infectious complications, corticosteroids (in conventional or large doses) should not be administered for the treatment of cerebral edema and increased intracranial pressure complicating ischemic stroke.	III: Harm	А	Recommendation wording modified from 2013 AIS Guidelines to match Class III stratifications. LOE unchanged. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.

5.2. Seizures

5.2. Seizures	COR	LOE	New, Revised, or Unchanged
Recurrent seizures after stroke should be treated in a manner similar to when they occur with other acute neurological conditions, and anti-seizure drugs should be selected based upon specific patient characteristics.	ı	C-LD	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
2. Prophylactic use of anti-seizure drugs is not recommended.	III: No Benefit	B-R	Recommendation reworded for clarity from 2013 AlS Guidelines. LOE revised. COR amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

6. In-Hospital Institution of Secondary Prevention: Evaluation

6.1. Brain Imaging

6.1. Brain Imaging	COR	LOE	New, Revised, or Unchanged
1. Routine use of brain MRI in all patients with AIS is not cost-effective and is not recommended for initial diagnosis or to plan subsequent treatment.	III: No Benefit	B-NR	New recommendation.
In some patients with AIS, the use of MRI might be considered to provide additional information for initial diagnosis or to plan subsequent treatment, although the effect on outcomes is uncertain.	llb	C-EO	New recommendation.
Diagnostic testing is cost-effective when it leads to a change in treatment that imp of all patients with acute stroke has been shown to be cost-effective primarily beca and the avoidance of antithrombotic treatment in these patients. In many patients can be made accurately on the basis of the clinical presentation and either a negatischemic changes, which can be detected in the majority of patients with carefu more sensitive than CT for detecting AIS, 66,67 systematic reviews with meta-analys have shown that routine use of MRI in all patients with AIS is not cost-effective. 68,68 shown poor or no association between the pattern on ischemic lesions on brain MI Specifically, the pattern of acute multiple infarcts in multiple cerebral circulations hand a negative likelihood ratio of 0.96 for cardioembolic etiologic classification (cor and a positive likelihood ratio of 1.18 and a negative likelihood ratio of 0.98 for sub on long-term cardiac monitoring (combined data from 2 studies ^{258,260}). In some pat those with uncertain clinical stroke localization who are candidates for early CEA or demonstration of an area of restricted diffusion on DW-MRI may be helpful in selection outcomes. However, there are inadequate data at this time to establish which patier routine use is not recommended. More research is needed to determine criteria for	ause of the detections, the diagnosis of istive NCCT or one should attention. All Althouses and decision-anal Studies of patients RI and etiologic classias a positive likelihombined data from 4 isequent detection of ients with negative I r stenting for secondating treatment that ents will benefit fron	n of acute ICH schemic stroke owing early gh DW-MRI is alytic modeling with AIS have sification. 258-266 ood ratio of 1.41 studies 263-265,267) if atrial fibrillation NCCT such as dary prevention, improves n DW-MRI, and its	See Tables XV, LXI, and LXII in online Data Supplement 1.

6.2. Vascular Imaging

6.2. Vascular Imaging	COR	LOE	New, Revised, or Unchanged
 For patients with nondisabling (mRS score 0-2) AIS in the carotid territory who are candidates for CEA or stenting, noninvasive imaging of the cervical vessels should be performed routinely within 24 hours of admission. 	1	B-NR	New recommendation. Heart Stroke Association Association
Past data have indicated that the risk of recurrent stroke caused by symptomatic carotid stenosis is highest early after the initial event. 268-272 Although there is evidence that early or emergency revascularization via either CEA or carotid angioplasty and stenting may be safe in selected cases, 273-275 there are no high-quality prospective data supporting early versus late carotid revascularization in all cases. 276 In cases of nondisabling stroke, a meta-analysis by De Rango et al 269 demonstrates high rates of complications when treated <48 hours after the initial event and no difference in risks when treated between 0 and 7 days and 0 and 15 days. Revascularization between 48 hours and 7 days after initial stroke is supported by the data in cases of nondisabling stroke (mRS score 0–2). 277 Imaging within 24 hours of admission is feasible and recommended to facilitate CEA/carotid angioplasty and stenting in eligible patients in the 48- to 72-hour window.			See Table LXIII in online Data Supplement 1.
2. In patients with AIS, routine noninvasive imaging by means of CTA or MRA of the intracranial vasculature to determine the presence of intracranial arterial stenosis or occlusion is not recommended to plan subsequent secondary preventive treatment.	III: No Benefit	А	New recommendation.
3. In some patients with AIS, noninvasive imaging by means of CTA or MRA of the intracranial vasculature to provide additional information to plan subsequent secondary preventive treatment may be reasonable, although the effect on outcomes is uncertain.	IIb	C-EO	New recommendation.
Intracranial atherosclerosis is associated with a high risk of recurrent stroke, ofte There is no RCT evidence that patients with AlS and symptomatic intracranial st from other patients with ischemic stroke of presumed atherosclerotic cause. In Symptomatic Intracranial Disease), warfarin provided no benefit over aspirin 3 taking antithrombotics at the time of the qualifying event. 200 The SAMMPRIS stur Management for Preventing Recurrent Stroke in Intracranial Stenosis) showed no to aggressive medical therapy that included aspirin 325 mg/d and clopidogrel 75 again even in those who were taking antithrombotics at the time of qualifying historical control subjects from similar patients in WASID, the medical treatmer almost 2-fold lower risk of any stroke or death within 30 days or ischemic st artery after 30 days. Whether this was the result of dual antiplatelet treatment wir remains to be demonstrated by an RCT. 282-284 Thus, the added utility and cost-CCTA or MRA of the intracranial vessels to identify intracranial arterial steno-oc therapy that will ultimately improve outcomes are unproven. Moreover, MRA and stenosis, 285,286 so any data from the angiographically based WASID or SAMMPRIS	See Tables LXIV and LXV in online Data Supplement 1.		

antithrombotic therapy.

6.3. Cardiac Evaluation

6.3. Cardiac Evaluation	COR	LOE	New, Revised, or Unchanged
Cardiac monitoring is recommended to screen for atrial fibrillation and other potentially serious cardiac arrhythmias that would necessitate emergency cardiac interventions. Cardiac monitoring should be performed for at least the first 24 hours.	ı	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. The clinical benefit of prolonged cardiac monitoring to detect atrial fibrillation after AIS is uncertain.	llb	B-R	New recommendation.
3. In some patients with AIS, prolonged cardiac monitoring to provide additional information to plan subsequent secondary preventive treatment may be reasonable, although the effect on outcomes is uncertain.	llb	C-EO	New recommendation.
In patients with TIA or ischemic stroke and atrial fibrillation detected by ECG : 24 months, oral anticoagulation begun within 3 months is superior to aspirin death, stroke, MI, and systemic embolism (HR, 0.60; 95% CI, 0.41–0.87). 287 by a variety of techniques, atrial fibrillation is newly detected in nearly a quar TIA. 288 However, in the few RCTs of prolonged cardiac monitoring after stroke significant benefit of oral anticoagulation for stroke prevention in such patien In CRYSTAL AF (Study of Continuous Cardiac Monitoring to Assess Atrial Fibri at 36 months, atrial fibrillation was detected in 30% of 221 patients with imp 3% of 220 control subjects (P <0.001), but the occurrence of TIA or ischemic cardiac monitor group and 11% in the control group (P =0.64). 291,292 In Find-Ain Stroke–Evaluation of Enhanced and Prolonged Holter Monitoring), atrial fib 200 patients with 10-day Holter monitoring at baseline, 3 months, and 6 mor the standard care group who had at least 24 hours of rhythm monitoring (P =1 difference in recurrent stroke at 12 months (3.7% versus 5.4%; P =0.46). 294 C failed to show a difference in outcomes. 290,293,295 All of these studies were unc clinical end points. Thus, the appropriate patient selection criteria for prolong clinical benefits of doing so remain uncertain at this time. Further randomized are needed to clarify best practice.	American Heart Stroke Association		
Routine use of echocardiography in all patients with AIS to plan subsequent secondary preventive treatment is not cost-effective and is not recommended.	III: No Benefit	B-NR	New recommendation.
5. In selected patients with AIS, echocardiography to provide additional information to plan subsequent secondary preventive treatment may be reasonable.	llb	B-R	New recommendation.
Current evidence on cost-effectiveness is insufficient to justify routine use of patients. Those patients with known or newly discovered atrial fibrillation by anticoagulation regardless of echocardiographic findings. The risk of recurrer echocardiographic lesions and the efficacy of treatment in reducing that risk and accuracy of echocardiography in detecting intracardiac thrombus indicat transthoracic echocardiography and transesophageal echocardiography will positive as true-positive diagnoses. Intracardiac thrombus occurs almost exc evidence of heart disease but is rare even in them. 296 Additional research on harbor intracardiac thrombus, on recurrent stroke risk in patients with intraca of oral anticoagulation in reducing that risk is needed. 296-298 Five RCTs have e echocardiographically detected patent foramen ovale to prevent recurrent str cause for their index stroke. 299-304 All 5 suffered from potential bias resulting determining which events should be referred for blinded end-point adjudicati	See Tables LXIX and LXX in online Data Supplement 1.		

6.4. Glucose

6.4. Glucose	COR	LOE	New, Revised, or Unchanged
After AIS, it is reasonable to screen all patients for diabetes mellitus with testing of fasting plasma glucose, hemoglobin A1c, or an oral glucose tolerance test. Choice of test and timing should be guided by clinical judgment and recognition that acute illness may temporarily perturb measures of plasma glucose. In general, hemoglobin A1c may be more accurate than other screening tests in the immediate post-event period.	lla	C-EO	Recommendation wording modified from 2014 Secondary Prevention to match Class Ila stratifications and reworded for clarity. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

6.5. Cholesterol

6.5. Cholesterol	COR	LOE	New, Revised, or Unchanged
Routine measurement of blood cholesterol levels in all patients with ischemic stroke presumed to be of atherosclerotic origin who are not already taking a high-intensity statin is not recommended.	III: No Benefit	B-R	New recommendation.
2. Measurement of blood cholesterol levels in patients with ischemic stroke presumed to be of atherosclerotic origin who are already taking an optimized regimen of statin therapy may be useful for identifying patients who would be candidates for outpatient proprotein convertase subtilisin/kexin type 9 inhibitor treatment to reduce the risk of subsequent cardiovascular death, MI, or stroke.	llb	B-R	New recommendation.
The "2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Redu Risk in Adults" recommend statin therapy for secondary prevention for adults cardiovascular disease (ASCVD), including stroke presumed to be of atherosc identified for treatment or titration to a specific low-density lipoprotein choles 2016 European Society of Cardiology/European Atherosclerosis Society guide dyslipidemias and the 2014 quidelines from the UK National Institute for Heal	See Tables LXXI and LXXII in online Data Supplement 1.		

recommendations based on clinical factors and not blood cholesterol measurements. 305,306 Thus, statin therapy can be recommended in patients with stroke presumed to be of atherosclerotic origin without measurement of blood cholesterol. For patients with ischemic stroke that is presumed to be the result of nonatherosclerotic disease such as arterial dissection, measurement of blood cholesterol may be of value because the primary prevention guidelines are based on LDL-C levels.7 It is of note that the 2012 Canadian Cardiovascular Society guidelines recommend a target LDL-C <2.0 mmol/L or >50% reduction of LDL-C for patients with cerebrovascular disease. 307 The FOURIER study (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk) randomized 27 564 patients with clinically evident ASCVD and elevated fasting LDL-C level or non-high-density lipoprotein cholesterol who were taking an optimized regimen of lipidlowering therapy to subcutaneous injections of evolocumab or placebo. Over a mean follow-up of 2.2 years, evolocumab treatment significantly reduced the risk of the composite primary end point of cardiovascular death, MI, stroke, hospitalization for unstable angina, or coronary revascularization (9.8% versus 11.3%; HR, 0.85; 95% CI, 0.79-0.92) and the composite secondary end point of cardiovascular death, MI, or stroke (5.9% versus 7.4%; HR, 0.80; 95% CI, 0.73-0.88). The number needed to treat to prevent 1 cardiovascular death, MI, or stroke over a period of 2 years was 74 with an estimated 2-year cost of \$2.1 million.308

6.6. Other Tests for Secondary Prevention

6.6. Other Tests for Secondary Prevention	COR	LOE	New, Revised, or Unchanged
Baseline troponin assessment is recommended in patients presenting with AIS but should not delay initiation of IV alteplase or mechanical thrombectomy.	ı	C-LD	Recommendation reworded for clarity from 2013 AlS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Routine screening for hyperhomocysteinemia among patients with a recent ischemic stroke is not indicated.	III: No Benefit	C-EO	Recommendation reworded for clarity from 2014 Secondary Prevention. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

6.6. Other Tests for Secondary Prevention (Continued)	COR	L0E	New, Revised, or Unchanged
3. The usefulness of screening for thrombophilic states in patients with ischemic stroke is unknown.	llb	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
A recent review article concludes that there is little, if any, contribution of the development of arterial thrombotic events and therefore tests for inherited th for the evaluation of stroke. ³⁰⁹		•	
4. Anticoagulation might be considered in patients who are found to have abnormal findings on coagulation testing after an initial ischemic stroke, depending on the abnormality and the clinical circumstances.	llb	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
5. Routine testing for antiphospholipid antibodies is not recommended for patients with ischemic stroke who have no other manifestations of the antiphospholipid syndrome and who have an alternative explanation for their ischemic event, such as atherosclerosis, carotid stenosis, or atrial fibrillation.	III: No Benefit	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
6. Routine screening of patients with recent ischemic stroke for obstructive sleep apnea (OSA) is not recommended.	III: No Benefit	B-R	New recommendation.
Numerous studies have established an association between OSA and structure among ischemic stroke patients and has been associated with consideral risk of cardiovascular and cerebrovascular events, worse prognosis, and positive airway pressure remains the most effective medical therapy for prevention RCTs showed no benefit of treating moderate to severe OSA value pressure in preventing cardiovascular events or death in patients with programming the routine screening for OSA of all patients with AIS is not beneficial for cardiovascular events or death.	See Table LXXIII in online Data Supplement 1. American Heart Association American Stroke Association		

6.7. Antithrombotic Treatment

6.7. Antithrombotic Treatment	COR	LOE	New, Revised, or Unchanged
For patients with non-cardioembolic AIS, the use of antiplatelet agents rather than oral anticoagulation is recommended to reduce the risk of recurrent stroke and other cardiovascular events.	I	А	Recommendation reworded for clarity from 2014 Secondary Prevention. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
2. For patients who have a noncardioembolic AIS while taking aspirin, increasing the dose of aspirin or switching to an alternative antiplatelet agent for additional benefit in secondary stroke prevention is not well established.	llb	B-R	Recommendation revised from 2014 Secondary Prevention.
In patients with a noncardioembolic ischemic stroke, the therapeutic benefit range of doses, but the hemorrhagic risk increases with higher doses. In pati the incident stroke, the benefit of switching to an alternative antiplatelet ager established. The SPS3 (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Preventional Subcortical Strokes) Proportion of Small Strokes (Secondary Preventional Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Preventional Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Preventional Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcortical Strokes) Proportion of Small Subcortical Strokes (Secondary Prevention of Small Subcort	ents taking aspiring or combination to combination the combination to combination the combination to combinatio	at the time of herapy is not well fit from adding oke taking aspirin n the SPS3 trial recent meta- oembolic stroke ents and recurrent apy. This erapy in patients as significant	See Tables LXXIV and LXXV in online Data Supplement 1.

6.7. Antithrombotic Treatment (Continued)	COR	LOE	New, Revised, or Unchanged
3. For patients who have a noncardioembolic AIS while taking antiplatelet therapy, switching to warfarin is not beneficial for secondary stroke prevention.	III: No Benefit	B-R	New recommendation.
In patients taking aspirin at the time of baseline stroke in WARSS (Warfarin n=181), there was no difference in recurrence of stroke between those rar those who switched to warfarin (RR, 0.9; 95% Cl, 0.5–1.5; P =0.63). 319,320 In the WASID trial found no difference in the primary outcome of ischemic str death in patients taking antiplatelet therapy at the time of their qualifying erandomized to warfarin. 278,321	ndomized to remain n addition, post ho oke, brain hemorrl	n on aspirin and c analysis from hage, or vascular	See Table LXXVI in online Data Supplement 1.
4. For early secondary prevention in patients with noncardioembolic AIS, the selection of an antiplatelet agent should be individualized on the basis of patient risk factor profiles, cost, tolerance, relative known efficacy of the agents, and other clinical characteristics.	1	C-EO	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement for original wording.
5. For patients with a history of ischemic stroke, atrial fibrillation, and coronary artery disease, the usefulness of adding antiplatelet therapy to oral anticoagulants is uncertain for purposes of reducing the risk of ischemic cardiovascular and cerebrovascular events. Unstable angina and coronary artery stenting represent special circumstances in which management may warrant dual antiplatelet/oral anticoagulation.	llb	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
6. For most patients with an AIS in the setting of atrial fibrillation, it is reasonable to initiate oral anticoagulation within 4 to 14 days after the onset of neurological symptoms.	lla	B-NR	Recommendation revised from 2014 Secondary Prevention.
A multicenter prospective cohort of 1029 patients with AIS and newly diagnostic outcome of stroke, TIA, systemic embolism, sICH, and means 90 days when anticoagulant was initiated 4 to 14 days from stroke onset starting anticoagulation at 4–14 compared with <4 days); high CHADS2-V. large ischemic lesions, and type of anticoagulation were associated with a prospective, open-label study of patients (n=60) with atrial fibrillation as score <9) treated with rivaroxaban for \leq 14 days found no symptomatic hedges from initiation. 207	See Table LXXVII in online Data Supplement 1 American Heart Stroke Association		
7. For patients with AIS and hemorrhagic transformation, initiation or continuation of antiplatelet or anticoagulation therapy may be considered, depending on the specific clinical scenario and underlying indication.	llb	B-NR	Recommendation revised from 2014 Secondary Prevention.
Numerous observational studies suggest that antithrombotics can be safely i AIS and hemorrhagic conversion. Individual assessment of the clinical indica is warranted. 322,323			See Table LXXVII in online Data Supplement 1
8. For patients with AIS and extracranial carotid or vertebral arterial dissection, treatment with either antiplatelet or anticoagulant therapy for 3 to 6 months may be reasonable.	llb	B-R	Recommendation revised from 2014 Secondary Prevention.
The CADISS (Cervical Artery Dissection in Stroke Study) group published II feasibility trial of anticoagulation versus antiplatelet therapy in 250 par or vertebral artery dissection recruited from 46 centers in the United King outcome was ipsilateral stroke or all-cause mortality within 3 months of to-treat analysis, and there were no significant differences between grou in rates of major bleeding. As a phase II trial, the study concluded that a not be feasible, driven primarily by low event rates in both groups. Additi of central radiological confirmation in 20% of cases and a mean time to perhaps limits generalizability in the hyperacute period. Nonetheless, the previous observational studies that found no significant difference in clin anticoagulation compared with antiplatelet therapy in patients with cervicaddition, a follow-up CADISS analysis found no difference in the natural or associated stroke risk by treatment allocation, suggesting an overall for recurrent events. 325	See Table LXXVIII in online Data Supplement 1.		

6.7. Antithrombotic Treatment (Continued)	COR	LOE	New, Revised, or Unchanged
For patients with AIS and extracranial carotid or vertebral arterial dissection who have definite recurrent cerebral ischemic events despite medical therapy, the value of EVT (stenting) is not well established.	Ilb	C-LD	Recommendation revised from 2014 Secondary Prevention.
There have been no controlled trials of EVT and stenting in patients with extr literature reflects small case series, individual case reports, and several syst review of the literature published until 2009 found 31 published reports (n=1 of 99% and procedural complication rate of 1.3%. However, these observative reporting bias. A retrospective analysis of patients with CeAD (n=161) compa with medical therapy alone found no difference in 90-day outcomes (adjuste P =0.56). With medical therapy alone, the overall prognosis and natural historaneurysms, are favorable. 324,325 Therefore, the benefit of EVT and stenting in established, and consideration of EVT should be reserved for patients with deevents despite medical therapy.	ematic reviews. ³²⁶ (40) with a technical data are prone aring EVT (with and d OR, 0.62; 95% Cry of CeAD, including patients with CeAD	A systematic al success rate to selection and without stenting) I, 0.12–3.14; ng dissecting is not well	See Table LXXVII in online Data Supplement 1.

6.8. Statins

	COR	LOE	New, Revised, or Unchanged
Among patients already taking statins at the time of onset of ischemic stroke, continuation of statin therapy during the acute period is reasonable.	lla	B-R	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. High-intensity statin therapy should be initiated or continued as first-line therapy in women and men ≤75 years of age who have clinical ASCVD*, unless contraindicated.	1	Α	Recommendation and Class unchanged from 2013 Cholesterol Guidelines.
3. In individuals with clinical ASCVD* in whom high-intensity statin therapy would otherwise be used, when high-intensity statin therapy is contraindicated or when characteristics predisposing to statin-associated adverse effects are present, moderate-intensity statin should be used as the second option if tolerated.	I	A	Recommendation and Class unchanged from 2013 Cholesterol Guidelines. American Heart Association
4. In individuals with clinical ASCVD* >75 years of age, it is reasonable to evaluate the potential for ASCVD risk-reduction benefits and for adverse effects and drug-drug interactions and to consider patient preferences when initiating a moderate- or high-intensity statin. It is reasonable to continue statin therapy in those who are tolerating it.	llb	C-EO	Recommendation and Class unchanged from 2013 Cholesterol Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
*Clinical ASCVD includes acute coronary syndromes, history of MI, stable or u arterial revascularization, stroke, TIA, or peripheral arterial disease presumed For high-intensity statin therapy, the 2013 ACC/AHA guidelines on the treatm atherosclerotic risk recommend atorvastatin 80 mg daily or rosuvastatin 20 m	See Table LXXI in online Data Supplement 1.		
guidelines for contraindications to high-intensity statin therapy and recomme statin therapy. $ \\$			
			Recommendation, Class, and LOE unchanged from 2014 Secondary Prevention.
statin therapy. 5. Patients with ischemic stroke and other comorbid ASCVD should be otherwise managed according to the 2013 ACC/AHA cholesterol guidelines, which include lifestyle modification, dietary	ndations for mode	rate-intensity	

6.9. Carotid Revascularization

6.9. Carotid Revascularization	COR	LOE	New, Revised, or Unchanged
1. When revascularization is indicated for secondary prevention in patients with minor, nondisabling stroke (mRS score 0–2), it is reasonable to perform the procedure between 48 hours and 7 days of the index event rather than delay treatment if there are no contraindications to early revascularization.	lla	B-NR	Recommendation revised from 2014 Secondary Prevention.
The risk of recurrent stroke resulting from symptomatic carotid stenosis is highest in the first few days after the initial event. ^{268–272} Although there is evidence that early or emergency revascularization via either CEA or carotid angioplasty and stenting may be safe in selected cases, ^{273–275} there are no high-quality prospective data supporting early versus late carotid revascularization in all cases. ²⁷⁶ In cases of minor, nondisabling stroke, a meta-analysis by De Rango et al ²⁶⁹ demonstrates favorable rates of complications when treated at least 48 hours after the initial event, and the risks are not different when treated between 0 to 7 and 0 to 15 days. Revascularization between 48 hours and 7 days after initial stroke is supported by these data in cases of nondisabling stroke (mRS score 0–2). ²⁷⁷			See Table LXIII in online Data Supplement 1.

6.10. Smoking Cessation Intervention

6.10. Smoking Cessation Intervention	COR	LOE	New, Revised, or Unchanged
Healthcare providers should strongly advise every patient with AIS who has smoked in the past year to quit.	I	C-EO	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Counseling, nicotine products, and oral smoking cessation medications are effective in helping smokers to quit.	1	Α	Recommendation, Class, and LOE unchanged from 2014 Secondary Prevention.
For smokers with an AIS, in-hospital initiation of high-intensity behavioral therapies is reasonable.	lla	B-R	New recommendation. American American
4. For smokers with an AIS, in-hospital initiation of varenicline might be considered.	llb	B-R	As New-recommendation on a
For smokers with an AIS, in-hospital initiation of interventions that incorporate both pharmacotherapy and behavioral support might be considered.	llb	B-R	New recommendation.
A meta-analysis by the Cochrane group indicates that (1) high-intensity behavioral index hospitalization and include at least 1 month of supportive contact after discipant among hospitalized patients, regardless of the patients' admitting diagnoses, 331 a both pharmacotherapy and behavioral support enhance smoking cessation surintervention or usual care. 332,333 There are limited data on the efficacy of the various and when they should be implemented after the occurrence of an acute atherosciblind, randomized, placebo-controlled trial in which 302 smokers hospitalized with randomized to varenicline or placebo for 12 weeks showed that at 24 weeks abstivate varenicline group versus 32.5% in the placebo group and continuous abstinence group versus 25.8% in the placebo group. 334 Patients in both groups received low Korean smokers with AIS assessed a timely intervention strategy versus conventic comprised a certified nurse providing comprehensive education during admission discharge. Timely intervention was associated with greater odds of sustained smooth	king cessation that incorporate ith minimal on strategies ticenter, double- y syndrome were 47.3% in the n the varenicline ng. A study of Timely intervention nseling after	See Table LXXXI and LXXXII in online Data Supplement 1.	
6. It is reasonable to advise patients after ischemic stroke to avoid second-hand (passive) tobacco smoke.	lla	B-NR	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

6.11. Stroke Education

6.11. Stroke Education	COR	LOE	New, Revised, or Unchanged
Patient education about stroke is recommended. Patients should be provided with information, advice, and the opportunity to talk about the impact of the illness on their lives.	1	C-EO	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE revised.

Disclosures

Writing Group Disclosures

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
William J. Powers	University of North Carolina, Chapel Hill	NIH (coinvestigator on grant to develop MR CMRO2 measurement)*; NIH (coinvestigator on clinical trial of dental health to prevent stroke)*	None	None	Cleveland Clinic*; Wake Forest University*; Ozarks Medical Center*	None	None	None
Alejandro A. Rabinstein	Mayo Clinic	None	None	None	None	None	None	None
Teri Ackerson	Saint Luke's Health System, AHA/ASA	None	None	None	None	None	None	None
Opeolu M. Adeoye	University of Cincinnati	NIH/NINDS*	None	None	None	Sense Diagnostics, LLC†	None	None
Nicholas C. Bambakidis	University Hospitals, Cleveland Medical Center	None	None	None	None	None	None	None
Kyra Becker	University of Washington School of Medicine Harborview Medical Center	None	None	None	Various law firms†	Heart S	lcon† merican troke ssociation。	None
José Biller	Loyola University Chicago	Accorda (DSMB committee member)*	None None	None	None	None	None	Journal of Stroke and Cerebrovasculal Disease (family) Up-to-Date (Editorial Board member)*; edito (self; Journal of Stroke and Cerebrovasculal Disease, unpaid)
Michael Brown	Michigan State University College of Human Medicine, Emergency Medicine	None	None	None	Wicker Smith O'Hara McCoy & Ford PA*; Anthony T. Martino, Clark, Martino, PA*	None	None	None
Bart M. Demaerschalk	Mayo Clinic Neurology, Mayo Clinic Hospital	None	None	None	None	None	None	None
Brian Hoh	University of Florida	None	None	None	None	None	None	None
Edward C. Jauch	Medical University of South Carolina	Genentech (Executive Committee for PRISMS Study)*; Ischemia Care (Biomarker research study)*; NIH (PI StrokeNet hub)†	None	None	Defense*	Jan Medical*	None	None
Chelsea S. Kidwell	University of Arizona	None	None	None	None	None	None	None

(Continued)

Writing Group Disclosures Continued

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Thabele M. Leslie-Mazwi	Massachusetts General Hospital	None	None	None	None	None	None	None
Bruce Ovbiagele	Medical University of South Carolina	NIH (U01 NS079179, U54 HG007479)†	None	None	None	None	None	None
Phillip A. Scott	University of Michigan, Department of Emergency Medicine	NIH/NINDS (PI for NINDS Regional Coordinating Stroke Center grant RCC- 17)†	None	None	Medical legal consultant, defense and plaintiff*	None	None	None
Kevin N. Sheth	Yale University School of Medicine	None	Remedy (grant for PI on Clinical Trial)†; Bard (grant for PI on Clinical Trial)†; Stryker (Adjudication Committee)*	None	Defense and Plaintiff*	None	None	None
Andrew M. Southerland	University of Virginia	HRSA G01RH27869-01-00 (investigator, research salary support)†; American Academy of Neurology (PI, project support)*; American Board of Psychiatry and Neurology (Faculty Fellowship, research and salary support)†; NHLBI, NINDS (U01 HL088942) (Cardiothoracic Surgical Trials Network)†	None	AHA/ASA*	Legal expert review*	Heart S	None merican troke ssociation	Neurology® journal*
Deborah V. Summers	St. Luke's Health System	None	None	None	None	None	None	None
David L. Tirschwell	University of Washington– Harborview Medical Center	None	None	None	None	None	St. Jude/ Abbott*	None

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be "significant" if (a) the person receives \$10 000 or more during any 12-month period, or 5% or more of the person's gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns \$10 000 or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition.

*Modest.

Reviewer Disclosures

Reviewer	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Karen L. Furie	Rhode Island Hospital	None	None	None	None	None	None	None
Steven J. Kittner	Veterans Affairs Maryland Health Care System; University of Maryland	None	None	None	None	None	None	None

(Continued)

[†]Significant.

Reviewer Disclosures Continued

Reviewer	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Lawrence R. Wechsler	University of Pittsburgh	None	None	None	None	None	None	None
Babu G. Welch	UT Southwestern Medical Center	None	None	Stryker Neurovascular*	None	None	Stryker Neurovascular*	None

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be "significant" if (a) the person receives \$10 000 or more during any 12-month period, or 5% or more of the person's gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns \$10 000 or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition.

*Modest.

References

- Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
- Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, deVeber G, Ferro JM, Tsai FY; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:1158–1192. doi: 10.1161/STR.0b013e31820a8364.
- Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:XXXX–XXX. doi: 10.1161/STR. 0000000000000160
- Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Effect of dysphagia screening strategies on clinical outcomes after stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:XXX– XXX. doi: 10.1161/STR.0000000000000159.
- 5. Schwamm LH, Audebert HJ, Amarenco P, Chumbler NR, Frankel MR, George MG, Gorelick PB, Horton KB, Kaste M, Lackland DT, Levine SR, Meyer BC, Meyers PM, Patterson V, Stranne SK, White CJ; on behalf of the American Heart Association Stroke Council; Council on Epidemiology and Prevention; Interdisciplinary Council on Ceripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association. Stroke. 2009;40:2635–2660. doi: 10.1161/STROKEAHA.109.192361.
- 6. Higashida R, Alberts MJ, Alexander DN, Crocco TJ, Demaerschalk BM, Derdeyn CP, Goldstein LB, Jauch EC, Mayer SA, Meltzer NM, Peterson ED, Rosenwasser RH, Saver JL, Schwamm L, Summers D, Wechsler L, Wood JP; on behalf of the American Heart Association Advocacy Coordinating Committee. Interactions within stroke systems of care: a policy statement from the American Heart Association/American Stroke Association. Stroke. 2013;44:2961–2984. doi: 10.1161/STR.0b013e3182a6d2b2.
- 7. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW. 2013 ACC/ AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

- [published corrections appear in *Circulation*. 2014;129:S46–S48 and *Circulation*. 2015;132:e396]. *Circulation*. 2014;129(suppl 2):S1–S45. doi: 10.1161/01.cir.0000437738.63853.7a.
- January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW. 2014 AHA/ACC/ HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/ American Heart Association Task Force on practice guidelines and the Heart Rhythm Society [published correction appears in Circulation. 2014;130:e270–271]. Circulation. 2014;130:2071–2104. doi: 10.1161/ CIR.000000000000000000040.
- Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, Schwab S, Smith EE, Tamargo RJ, Wintermark M; on behalf of the American Heart Association Stroke Council. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American/Stroke Association/Stroke. 2014;45:1222–1238. doi: 10.1161/01.str.0000441965.15164.dd.
- Holloway RG, Arnold RM, Creutzfeldt CJ, Lewis EF, Lutz BJ, McCann RM, Rabinstein AA, Saposnik G, Sheth KN, Zahuranec DB, Zipfel GJ, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Clinical Cardiology. Palliative and end-of-life care in stroke: a statement for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2014;45:1887–1916. doi: 10.1161/ STR.000000000000000015.
- 11. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, Fang MC, Fisher M, Furie KL, Heck DV, Johnston SC, Kasner SE, Kittner SJ, Mitchell PH, Rich MW, Richardson D, Schwamm LH, Wilson JA; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in Stroke. 2015;46:e54]. Stroke. 2014;45:2160–2236. doi: 10.1161/STR.00000000000000024.
- Smith EE, Saver JL, Alexander DN, Furie KL, Hopkins LN, Katzan IL, Mackey JS, Miller EL, Schwamm LH, Williams LS; on behalf of the AHA/ASA Stroke Performance Oversight Committee. Clinical performance measures for adults hospitalized with acute ischemic stroke: performance measures for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:3472–3498. doi: 10.1161/STR.000000000000045.
- Singletary EM, Charlton NP, Epstein JL, Ferguson JD, Jensen JL, MacPherson AI, Pellegrino JL, Smith WW, Swain JM, Lojero-Wheatley LF, Zideman DA. Part 15: first aid: 2015 American Heart Association and American Red Cross guidelines update for first aid. *Circulation*. 2015;132(suppl 2):S574–S589. doi: 10.1161/CIR.0000000000000269.
- 14. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR; on behalf of the American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular

- treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2015;46:3020–3035. doi: 10.1161/STR.000000000000074.
- 15. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, Saposnik G, Saver JL, Smith EE; on behalf of the American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in Stroke. 2016;47:581–641. doi: 10.1161/STR.0000000000000086.
- 16. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published corrections appear in Stroke. 2017;48:e78 and Stroke. 2017;48:e369]. Stroke. 2016;47:e98–e169. doi: 10.1161/STR.000000000000000098.
- Ojike N, Ravenell J, Seixas A, Masters-Israilov A, Rogers A, Jean-Louis G, Ogedegbe G, McFarlane SI. Racial disparity in stroke awareness in the US: an analysis of the 2014 National Health Interview Survey. J Neurol Neurophysiol. 2016;7:365.
- Ekundayo OJ, Saver JL, Fonarow GC, Schwamm LH, Xian Y, Zhao X, Hernandez AF, Peterson ED, Cheng EM. Patterns of emergency medical services use and its association with timely stroke treatment: findings from Get With The Guidelines–Stroke. *Circ Cardiovasc Qual Outcomes*. 2013;6:262–269. doi: 10.1161/CIRCOUTCOMES.113.000089.
- Mochari-Greenberger H, Xian Y, Hellkamp AS, Schulte PJ, Bhatt DL, Fonarow GC, Saver JL, Reeves MJ, Schwamm LH, Smith EE. Racial/ ethnic and sex differences in emergency medical services transport among hospitalized US Stroke patients: analysis of the national Get With The Guidelines-Stroke Registry. J Am Heart Assoc. 2015;4:e002099. doi: 10.1161/JAHA.115.002099.
- Boden-Albala B, Stillman J, Roberts ET, Quarles LW, Glymour MM, Chong J, Moats H, Torrico V, Parides MC. Comparison of acute stroke preparedness strategies to decrease emergency department arrival time in a multiethnic cohort: the Stroke Warning Information and Faster Treatment Study. Stroke. 2015;46:1806–1812. doi: 10.1161/ STROKEAHA.114.008502.
- Berglund A, Svensson L, Wahlgren N, von Euler M; HASTA Collaborators. Face Arm Speech Time Test use in the prehospital setting, better in the ambulance than in the emergency medical communication center. *Cerebrovasc Dis.* 2014;37:212–216. doi: 10.1159/000358116.
- De Luca A, Giorgi Rossi P, Villa GF; Stroke Group Italian Society Pre Hospital EMERGENCY SERVICES. The use of Cincinnati Prehospital Stroke Scale during telephone dispatch interview increases the accuracy in identifying stroke and transient ischemic attack symptoms. BMC Health Serv Res. 2013;13:513. doi: 10.1186/1472-6963-13-513.
- Lin CB, Peterson ED, Smith EE, Saver JL, Liang L, Xian Y, Olson DM, Shah BR, Hernandez AF, Schwamm LH, Fonarow GC. Emergency medical service hospital prenotification is associated with improved evaluation and treatment of acute ischemic stroke. *Circ Cardiovasc Qual Outcomes*. 2012;5:514–522. doi: 10.1161/CIRCOUTCOMES.112.965210.
- Katz BS, McMullan JT, Sucharew H, Adeoye O, Broderick JP. Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale. Stroke. 2015;46:1508–1512. doi: 10.1161/STROKEAHA.115.008804.
- Lima FO, Silva GS, Furie KL, Frankel MR, Lev MH, Camargo ÉC, Haussen DC, Singhal AB, Koroshetz WJ, Smith WS, Nogueira RG. Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes. Stroke. 2016;47:1997–2002. doi: 10.1161/STROKEAHA.116.013301.
- Perez de la Ossa N, Carrera D, Gorchs M, Querol M, Millan M, Gomis M, Dorado L, Lopez-Cancio E, Hernandez-Perez M, Chicharro V, Escalada X, Jimenez X, Davalos A. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. *Stroke*. 2014;45:87–91. doi: 10.1161/ STROKEAHA.113.003071.
- Hastrup S, Damgaard D, Johnsen SP, Andersen G. Prehospital acute stroke severity scale to predict large artery occlusion: design and

- comparison with other scales. *Stroke*. 2016;47:1772–1776. doi: 10.1161/STROKEAHA.115.012482.
- Singer OC, Dvorak F, du Mesnil de Rochemont R, Lanfermann H, Sitzer M, Neumann-Haefelin T. A simple 3-item stroke scale: comparison with the National Institutes of Health Stroke Scale and prediction of middle cerebral artery occlusion. *Stroke*. 2005;36:773–776. doi: 10.1161/01. STR.0000157591.61322.df.
- Nazliel B, Starkman S, Liebeskind DS, Ovbiagele B, Kim D, Sanossian N, Ali L, Buck B, Villablanca P, Vinuela F, Duckwiler G, Jahan R, Saver JL. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions. *Stroke*. 2008;39:2264–2267. doi: 10.1161/STROKEAHA.107.508127.
- American Heart Association/American Stroke Association. Severity-Based Stroke Triage Algorithm for EMS. http://www.heart.org/missionlifelinestroke. Accessed December 1, 2017.
- Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. *JAMA*. 2013;309:2480–2488.
- 32. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF, du Mesnil de Rochemont R, Berkhemer OA, Jovin TG, Siddiqui AH, van Zwam WH, Davis SM, Castaño C, Sapkota BL, Fransen PS, Molina C, van Oostenbrugge RJ, Chamorro Á, Lingsma H, Silver FL, Donnan GA, Shuaib A, Brown S, Stouch B, Mitchell PJ, Davalos A, Roos YB, Hill MD; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316:1279–1288. doi: 10.1001/jama.2016.13647.
- Ganesh A, Lindsay P, Fang J, Kapral MK, Côté R, Joiner I, Hakim AM, Hill MD. Integrated systems of stroke care and reduction in 30-day mortality: a retrospective analysis. *Neurology*. 2016;86:898–904. doi: 10.1212/WNI.0000000000002443
- Man S, Cox M, Patel P, Smith EE, Reeves MJ, Saver JL, Bhatt DL, Xian Y, Schwamm LH, Fonarow GC. Differences in acute ischemic stroke quality of care and outcomes by primary stroke center certification organization. Stroke. 2017;48:412–419. doi: 10.1161/STROKEAHA.116.014426.
- Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Xian Y, Hernandez AF, Peterson ED, Schwamm LH. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. JAMA. 2014;311:1632–1640.
- 36. Xian Y, Xu H, Lytle B, Blevins J, Peterson ED, Hernandez AF, Smith EE, Saver JL, Messe SR, Paulsen M, Suter RE, Reeves MJ, Jauch EC, Schwamm LH, Fonarow GC. Use of strategies to improve doorto-needle times with tissue-type plasminogen activator in acute ischemic stroke in clinical practice: findings from Target: Stroke. Circ Cardiovasc Qual Outcomes. 2017;10:e003227. doi: 10.1161/CIRCOUTCOMES.116.003227.
- Target Stroke Phase II website http://www.strokeassociation.org/ STROKEORG/Professionals/TargetStroke/Target-Stroke-Phase-II_ UCM_469859_Article.jsp#.Wk1CBd-nF3g. Accessed January 3, 2018.
- Scott PA, Meurer WJ, Frederiksen SM, Kalbfleisch JD, Xu Z, Haan MN, Silbergleit R, Morgenstern LB; INSTINCT Investigators. A multilevel intervention to increase community hospital use of alteplase for acute stroke (INSTINCT): a cluster-randomised controlled trial. *Lancet* Neurol. 2013;12:139–148. doi: 10.1016/S1474-4422(12)70311-3.
- Dirks M, Niessen LW, van Wijngaarden JD, Koudstaal PJ, Franke CL, van Oostenbrugge RJ, Huijsman R, Lingsma HF, Minkman MM, Dippel DW; PRomoting ACute Thrombolysis in Ischemic StrokE (PRACTISE) Investigators. Promoting thrombolysis in acute ischemic stroke. Stroke. 2011;42:1325–1330. doi: 10.1161/STROKEAHA.110.596940.
- Phabphal K, Hirunpatch S. The effectiveness of low-cost teleconsultation for emergency head computer tomography in patients with suspected stroke. J Telemed Telecare. 2008;14:439–442. doi: 10.1258/ itt.2008.080603.
- Mitchell JR, Sharma P, Modi J, Simpson M, Thomas M, Hill MD, Goyal M. A smartphone client-server teleradiology system for primary diagnosis of acute stroke. *J Med Internet Res.* 2011;13:e31. doi: 10.2196/ jmir.1732.
- 42. Johnston KC, Worrall BB; Teleradiology Assessment of Computerized Tomographs Online Reliability Study. Teleradiology Assessment of Computerized Tomographs Online Reliability Study (TRACTORS) for acute stroke evaluation. *Telemed J E Health*. 2003;9:227–233. doi: 10.1089/153056203322502605.

- 43. Demaerschalk BM, Bobrow BJ, Raman R, Ernstrom K, Hoxworth JM, Patel AC, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Meyer BC; for the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) in Arizona—The Initial Mayo Clinic Experience (AZ TIME) Investigators. CT interpretation in a telestroke network: agreement among a spoke radiologist, hub vascular neurologist, and hub neuroradiologist. Stroke. 2012;43:3095–3097. doi: 10.1161/STROKEAHA.112.666255.
- 44. Spokoyny I, Raman R, Ernstrom K, Demaerschalk BM, Lyden PD, Hemmen TM, Guzik AK, Chen JY, Meyer BC. Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network. *J Stroke Cerebrovasc Dis*. 2014;23:511–515. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.023.
- Puetz V, Bodechtel U, Gerber JC, Dzialowski I, Kunz A, Wolz M, Hentschel H, Schultheiss T, Kepplinger J, Schneider H, Wiedemann B, Wojciechowski C, Reichmann H, Gahn G, von Kummer R. Reliability of brain CT evaluation by stroke neurologists in telemedicine. *Neurology*. 2013;80:332–338. doi: 10.1212/WNL.0b013e31827f07d0.
- 46. Demaerschalk BM, Raman R, Ernstrom K, Meyer BC. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. *Telemed J E Health*. 2012;18:230–237. doi: 10.1089/tmj.2011.0116.
- Kepplinger J, Barlinn K, Deckert S, Scheibe M, Bodechtel U, Schmitt J. Safety and efficacy of thrombolysis in telestroke: a systematic review and meta-analysis. *Neurology*. 2016;87:1344–1351. doi: 10.1212/ WNL.0000000000003148.
- 48. Fong WC, Ismail M, Lo JW, Li JT, Wong AH, Ng YW, Chan PY, Chan AL, Chan GH, Fong KW, Cheung NY, Wong GC, Ho HF, Chan ST, Kwok VW, Yuen BM, Chan JH, Li PC. Telephone and teleradiology-guided thrombolysis can achieve similar outcome as thrombolysis by neurologist on-site. *J Stroke Cerebrovasc Dis*. 2015;24:1223–1228. doi: 10.1016/j.jstrokecerebrovasdis.2015.01.022.
- Barlinn J, Gerber J, Barlinn K, Pallesen LP, Siepmann T, Zerna C, Wojciechowski C, Puetz V, von Kummer R, Reichmann H, Linn J, Bodechtel U. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study. *Int J Stroke*. 2017;12:502–509. doi: 10.1177/1747493016681018.
- Vagal A, Meganathan K, Kleindorfer DO, Adeoye O, Hornung R, Khatri P. Increasing use of computed tomographic perfusion and computed tomographic angiograms in acute ischemic stroke from 2006 to 2010. Stroke. 2014;45:1029–1034. doi: 10.1161/STROKEAHA.113.004332.
- Demaerschalk BM, Yip TR. Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States. *Stroke*. 2005;36:2500–2503. doi: 10.1161/01. STR.0000185699.37843.14.
- Demaerschalk BM, Durocher DL. How diagnosis-related group 559 will change the US Medicare cost reimbursement ratio for stroke centers. Stroke. 2007;38:1309–1312. doi: 10.1161/01.STR.0000260185.74694.
- Penaloza-Ramos MC, Sheppard JP, Jowett S, Barton P, Mant J, Quinn T, Mellor RM, Sims D, Sandler D, McManus RJ; on behalf of the BBC CLAHRC Investigators. Cost-effectiveness of optimizing acute stroke care services for thrombolysis. Stroke. 2014;45:553–562. doi: 10.1161/ STROKEAHA.113.003216.
- 54. Tan Tanny SP, Busija L, Liew D, Teo S, Davis SM, Yan B. Cost-effectiveness of thrombolysis within 4.5 hours of acute ischemic stroke: experience from Australian stroke center. *Stroke*. 2013;44:2269–2274. doi: 10.1161/STROKEAHA.113.001295.
- Health Quality Ontario. Mechanical thrombectomy in patients with acute ischemic stroke: a health technology assessment. Ont Health Technol Assess Ser. 2016;16:1–79.
- Ganesalingam J, Pizzo E, Morris S, Sunderland T, Ames D, Lobotesis K. Cost-utility analysis of mechanical thrombectomy using stent retrievers in acute ischemic stroke. Stroke. 2015;46:2591–2598. doi: 10.1161/STROKEAHA.115.009396.
- 57. Song S, Fonarow GC, Olson DM, Liang L, Schulte PJ, Hernandez AF, Peterson ED, Reeves MJ, Smith EE, Schwamm LH, Saver JL. Association of Get With The Guidelines–Stroke program participation and clinical outcomes for Medicare beneficiaries with ischemic stroke. Stroke. 2016;47:1294–1302. doi: 10.1161/STROKEAHA. 115.011874.
- Generalized efficacy of t-PA for acute stroke: subgroup analysis of the NINDS t-PA Stroke Trial. Stroke. 1997;28:2119–2225.

- Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, Woolson RF, Hansen MD. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). *Neurology*. 1999;53:126–131.
- Frankel MR, Morgenstern LB, Kwiatkowski T, Lu M, Tilley BC, Broderick JP, Libman R, Levine SR, Brott T. Predicting prognosis after stroke: a placebo group analysis from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial. *Neurology*. 2000;55:952–959.
- 61. Wahlgren N, Ahmed N, Eriksson N, Aichner F, Bluhmki E, Dávalos A, Erilä T, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Köhrmann M, Larrue V, Lees KR, Machnig T, Roine RO, Toni D, Vanhooren G; for the Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy Investigators. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy (SITS-MOST). Stroke. 2008;39:3316–3322. doi: 10.1161/STROKEAHA.107.510768.
- Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, Haley EC, Grotta J, Marler J. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke. 1994:25:2220–2226.
- Josephson SA, Hills NK, Johnston SC. NIH Stroke Scale reliability in ratings from a large sample of clinicians. *Cerebrovasc Dis*. 2006;22:389– 395. doi: 10.1159/000094857.
- Lyden P, Raman R, Liu L, Emr M, Warren M, Marler J. National Institutes of Health Stroke Scale certification is reliable across multiple venues. *Stroke*. 2009;40:2507–2511. doi: 10.1161/STROKEAHA.108.532069.
- 65. Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Relationship of National Institutes of Health Stroke Scale to 30-day mortality in Medicare beneficiaries with acute ischemic stroke. *J Am Heart Assoc*. 2012;1:42–50. doi: 10.1161/JAHA.111.000034.
- 66. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. *Lancet*. 2007;369:293–298. doi: 10.1016/S0140-6736(07)60151-2.
- Hwang DY, Silva GS, Furie KL, Greer DM. Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. *J Emerg Med.* 2012;42:559–565. doi: 10.1016/j.jemermed.2011.05.101.
- Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, Wardlaw JM, Deeks JJ. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. *Cochrane Database Syst Rev.* 2009:CD007424.
- 69. Wardlaw J, Brazzelli M, Miranda H, Chappell F, McNamee P, Scotland G, Quayyum Z, Martin D, Shuler K, Sandercock P, Dennis M. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation. *Health Technol Assess*. 2014;18:1–368, v. doi: 10.3310/hta18270.
- Wardlaw JM, Seymour J, Cairns J, Keir S, Lewis S, Sandercock P. Immediate computed tomography scanning of acute stroke is costeffective and improves quality of life. Stroke. 2004;35:2477–2483. doi: 10.1161/01.STR.0000143453.78005.44.
- Barber PA, Hill MD, Eliasziw M, Demchuk AM, Pexman JH, Hudon ME, Tomanek A, Frayne R, Buchan AM; ASPECTS Study Group. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. *J Neurol Neurosurg Psychiatry*. 2005;76:1528–1533. doi: 10.1136/jnnp.2004.059261.
- Heidenreich JO, Hsu D, Wang G, Jesberger JA, Tarr RW, Zaidat OO, Sunshine JL. Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care. *Acta Radiol*. 2008;49:550–557. doi: 10.1080/02841850801958320.
- 73. Lees KR, Emberson J, Blackwell L, Bluhmki E, Davis SM, Donnan GA, Grotta JC, Kaste M, von Kummer R, Lansberg MG, Lindley RI, Lyden P, Murray GD, Sandercock PA, Toni D, Toyoda K, Wardlaw JM, Whiteley WN, Baigent C, Hacke W, Howard G; on behalf of the Stroke Thrombolysis Trialists' Collaborators Group. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. Stroke. 2016;47:2373–2379. doi: 10.1161/STROKEAHA.116.013644.

- Aghaebrahim A, Streib C, Rangaraju S, Kenmuir CL, Giurgiutiu DV, Horev A, Saeed Y, Callaway CW, Guyette FX, Martin-Gill C, Pacella C, Ducruet AF, Jankowitz BT, Jovin TG, Jadhav AP. Streamlining door to recanalization processes in endovascular stroke therapy. *J Neurointerv* Surg. 2017;9:340–345. doi: 10.1136/neurintsurg-2016-012324.
- Messe SR, Khatri P, Reeves MJ, Smith EE, Saver JL, Bhatt DL, Grau-Sepulveda MV, Cox M, Peterson ED, Fonarow GC, Schwamm LH. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry. *Neurology*. 2016;87:1565–1574.
- Zaidi SF, Shawver J, Espinosa Morales A, Salahuddin H, Tietjen G, Lindstrom D, Parquette B, Adams A, Korsnack A, Jumaa MA. Stroke care: initial data from a county-based bypass protocol for patients with acute stroke. *J Neurointerv Surg*. 2017;9:631–635. doi: 10.1136/ neurintsurg-2016-012476.
- 77. IST-3 Collaborative Group. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. *Lancet Neurol*. 2015;14:485–496.
- Demchuk AM, Khan F, Hill MD, Barber PA, Silver B, Patel S, Levine SR; NINDS rt-PA Stroke Study Group. Importance of leukoaraiosis on CT for tissue plasminogen activator decision making: evaluation of the NINDS rt-PA Stroke Study. *Cerebrovasc Dis.* 2008;26:120–125. doi: 10.1159/000139658.
- Dzialowski I, Hill MD, Coutts SB, Demchuk AM, Kent DM, Wunderlich O, von Kummer R. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke. 2006;37:973–978. doi: 10.1161/01.STR.0000206215.62441.56.
- Demchuk AM, Hill MD, Barber PA, Silver B, Patel SC, Levine SR; for the NINDS rtPA Stroke Study Group, NIH. Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA Stroke Study. Stroke. 2005;36:2110–2115. doi: 10.1161/01.STR.0000181116.15426.58.
- 81. Patel SC, Levine SR, Tilley BC, Grotta JC, Lu M, Frankel M, Haley EC Jr, Brott TG, Broderick JP, Horowitz S, Lyden PD, Lewandowski CA, Marler JR, Welch KM; National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. *JAMA*. 2001;286:2830–2838.
- Charidimou A, Pasi M, Fiorelli M, Shams S, von Kummer R, Pantoni L, Rost N. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: a meta-analysis (v1). Stroke. 2016;47:2364–2372. doi: 10.1161/STROKEAHA.116.014096.
- Qureshi AI, Ezzeddine MA, Nasar A, Suri MF, Kirmani JF, Janjua N, Divani AA. Is IV tissue plasminogen activator beneficial in patients with hyperdense artery sign? *Neurology*. 2006;66:1171–1174. doi: 10.1212/01.wnl.0000208407.69544.5a.
- 84. Mair G, von Kummer R, Morris Z, von Heijne A, Bradey N, Cala L, Peeters A, Farrall AJ, Adami A, Potter G, Cohen G, Sandercock PA, Lindley RI, Wardlaw JM; IST-3 Collaborative Group. Effect of alteplase on the CT hyperdense artery sign and outcome after ischemic stroke. Neurology. 2016;86:118–125. doi: 10.1212/WNL.00000000000002236.
- Charidimou A, Shoamanesh A; International META-MICROBLEEDS Initiative. Clinical relevance of microbleeds in acute stroke thrombolysis: comprehensive meta-analysis. *Neurology*. 2016;87:1534–1541. doi: 10.1212/WNL.0000000000003207.
- 86. Tsivgoulis G, Zand R, Katsanos AH, Turc G, Nolte CH, Jung S, Cordonnier C, Fiebach JB, Scheitz JF, Klinger-Gratz PP, Oppenheim C, Goyal N, Safouris A, Mattle HP, Alexandrov AW, Schellinger PD, Alexandrov AV. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. *JAMA Neurol*. 2016;73:675–683. doi: 10.1001/jamaneurol.2016.0292.
- Tissue plasminogen activator for acute ischemic stroke: the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333:1581–1587.
- 88. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP; DEFUSE Investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Ann Neurol. 2006;60:508–517. doi: 10.1002/ana.20976.
- Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, Ford I, Muir KW. Alteplase Versus Tenecteplase for Thrombolysis After Ischaemic Stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. *Lancet Neurol*. 2015;14:368–376. doi: 10.1016/ S1474-4422(15)70017-7.

- Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000213.
- Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, O'Brien B, Bladin C, McElduff P, Allen C, Bateman G, Donnan G, Davis S, Levi C. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366:1099–1107. doi: 10.1056/ NEJMoa1109842
- 92. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Söhngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. *Lancet Neurol*. 2009;8:141–150. doi: 10.1016/S1474-4422(08)70267-9.
- 93. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, Chalk JB, Fink JN, Kimber TE, Schultz D, Hand PJ, Frayne J, Hankey G, Muir K, Gerraty R, Tress BM, Desmond PM; EPITHET Investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. *Lancet Neurol*. 2008;7:299–309. doi: 10.1016/S1474-4422(08)70044-9.
- 94. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, Sachara C, Soehngen M, Warach S, Hacke W; for the DEDAS Investigators. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006;37:1227–1231. doi: 10.1161/01.STR. 0000217403.66996.6d.
- 95. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S; for the DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. *Stroke*. 2005;36:66–73. doi: 10.1161/01.STR.0000149938.08731.2e.
- Ehrlich ME, Turner HL, Currie LJ, Wintermark M, Worrall BB, Southerland AM. Safety of computed tomographic angiography in the evaluation of patients with acute stroke: a single-center experience. Stroke. 2016;47:2045–2050. doi: 10.1161/STROKEAHA.116.013973.
- Aulicky P, Mikulík R, Goldemund D, Reif M, Dufek M, Kubelka T. Safety of performing CT angiography in stroke patients treated with intravenous thrombolysis. *J Neurol Neurosurg Psychiatry*. 2010;81:783–787. doi: 10.1136/jnnp.2009.184002.
- Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, González RG, Koroshetz WJ, Smith WS, Furie KL. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy. *AJNR Am J Neuroradiol*. 2010;31:817–821. doi: 10.3174/ajnr.A1927.
- Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. AJNR Am J Neuroradiol. 2008;29:1826–1830. doi: 10.3174/ajnr.A1257.
- Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM. Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. *Stroke*. 2007;38:2364–2366. doi: 10.1161/STROKEAHA.107.482778.
- Josephson SA, Dillon WP, Smith WS. Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging. *Neurology*. 2005;64:1805–1806. doi: 10.1212/01.WNL.0000161845.69114.62.
- 102. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó M, Millán M, Urra X, Cardona P, López-Cancio E, Tomasello A, Castaño C, Blasco J, Aja L, Dorado L, Quesada H, Rubiera M, Hernandez-Pérez M, Goyal M, Demchuk AM, von Kummer R, Gallofré M, Dávalos A; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–2306. doi: 10.1056/NEJMoa1503780.
- 103. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, du Mesnil de Rochemont R, Singer OC, Jahan R; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372:2285–2295. doi: 10.1056/NEJMoa1415061.
- 104. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF,

Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. *N Engl J Med*. 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.

- 105. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, Wu TY, Brooks M, Simpson MA, Miteff F, Levi CR, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Priglinger M, Ang T, Scroop R, Barber PA, McGuinness B, Wijeratne T, Phan TG, Chong W, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
- Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, Guillemin F; THRACE Investigators. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. *Lancet Neurol*. 2016;15:1138–1147. doi: 10.1016/S1474-4422(16)30177-6.
- 107. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama à Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
- 108. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct [published online ahead of print November 11, 2017]. N Engl J Med. doi: 10.1056/NEJMoa1706442. http://www.nejm.org/doi/full/10.1056/NEJMoa1706442.
- 109. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mylnash M, Heit JJ, Zaharchuk G, Kim S, Carrozzzella J, Palesch YY, Demchuk AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG; on behalf of the DEFUSE 3 Investigators. Thrombectomy for stroke with perfusion imaging selection at 6–16 hours. N Engl J Med. In press.
- 110. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, Lingsma HF, Sprengers ME, Jenniskens SF, Lycklama Å Nijeholt GJ, van Walderveen MA, van den Berg R, Bot JC, Beenen LF, Boers AM, Slump CH, Roos YB, van Oostenbrugge RJ, Dippel DW, van der Lugt A, van Zwam WH, Marquering HA, Majoie CB; on behalf of the MR CLEAN Investigators. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke. 2016;47:768–776. doi: 10.1161/STROKEAHA.115.011788.
- 111. Menon BK, Qazi E, Nambiar V, Foster LD, Yeatts SD, Liebeskind D, Jovin TG, Goyal M, Hill MD, Tomsick TA, Broderick JP, Demchuk AM; for the Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III Trial. Stroke. 2015;46:1239–1244. doi: 10.1161/STROKEAHA.115.009009.
- Saber H, Silver B, Santillan A, Azarpazhooh MR, Misra V, Behrouz R. Role of emergent chest radiography in evaluation of hyperacute stroke. *Neurology*. 2016;87:782–785. doi: 10.1212/WNL.00000000000002964.
- 113. Roffe C, Nevatte T, Sim J, Bishop J, Ives N, Ferdinand P, Gray R; Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative

- Group. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: the Stroke Oxygen Study Randomized Clinical Trial. *JAMA*. 2017;318:1125–1135. doi: 10.1001/jama.2017.11463.
- 114. Bennett MH, Weibel S, Wasiak J, Schnabel A, French C, Kranke P. Hyperbaric oxygen therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD004954.
- Heyboer M 3rd, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. Adv Wound Care (New Rochelle). 2017;6:210–224. doi: 10.1089/wound.2016.0718.
- Heyboer M 3rd, Jennings S, Grant WD, Ojevwe C, Byrne J, Wojcik SM.
 Seizure incidence by treatment pressure in patients undergoing hyperbaric oxygen therapy. *Undersea Hyperb Med*. 2014;41:379–385.
- 117. Wohlfahrt P, Krajcoviechova A, Jozifova M, Mayer O, Vanek J, Filipovsky J, Cifkova R. Low blood pressure during the acute period of ischemic stroke is associated with decreased survival. *J Hypertens*. 2015;33:339–345. doi: 10.1097/HJH.0000000000000414.
- Vemmos KN, Tsivgoulis G, Spengos K, Zakopoulos N, Synetos A, Manios E, Konstantopoulou P, Mavrikakis M. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. *J Intern Med.* 2004;255:257–265.
- Okumura K, Ohya Y, Maehara A, Wakugami K, Iseki K, Takishita S. Effects of blood pressure levels on case fatality after acute stroke. J Hypertens. 2005;23:1217–1223.
- Stead LG, Gilmore RM, Decker WW, Weaver AL, Brown RD Jr. Initial emergency department blood pressure as predictor of survival after acute ischemic stroke. *Neurology*. 2005;65:1179–1183. doi: 10.1212/01. wnl.0000180939.24845.22.
- 121. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A. Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome. *Stroke*. 2004;35:520–526. doi: 10.1161/01.STR.0000109769.22917.B0.
- Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA; for the IST Collaborative Group. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33:1315–1320.
- 123. Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Short-term blood pressure variability in acute strokes post hoc analysis of the Controlling Hypertension and Hypotension Immediately Post Stroke and Continue or Stop Post-Stroke Antihypertensives collaborative study trials. Stroke. 2015;46:1518–1524. doi: 10.1161/STROKEAHA. 115.009078
- Muscari A, Puddu GM, Serafini C, Fabbri E, Vizioli L, Zoli M. Predictors of short-term improvement of ischemic stroke. *Neurol Res*. 2013;35:594– 601. doi: 10.1179/1743132813Y.0000000181.
- Visvanathan A, Dennis M, Whiteley W. Parenteral fluid regimens for improving functional outcome in people with acute stroke. *Cochrane Database Syst Rev.* 2015:CD011138.
- 126. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, Jeerakathil T, Campbell BC, Barber PA, Bladin C, Fink J, Tress B, Donnan GA, Davis SM; for the EPITHET Investigators. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. *Stroke*. 2010;41:72–77. doi: 10.1161/STROKEAHA.109.563767.
- 127. Perini F, De Boni A, Marcon M, Bolgan I, Pellizzari M, Dionisio LD. Systolic blood pressure contributes to intracerebral haemorrhage after thrombolysis for ischemic stroke. *J Neurol Sci.* 2010;297:52–54. doi: 10.1016/j.jns.2010.06.025.
- 128. Toni D, Ahmed N, Anzini A, Lorenzano S, Brozman M, Kaste M, Mikulik R, Putaala J, Wahlgren N; SITS Investigators. Intravenous thrombolysis in young stroke patients: results from the SITS-ISTR. *Neurology*. 2012;78:880–887. doi: 10.1212/WNL.0b013e31824d966b.
- 129. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, Wahlgren N, Ahmed N; for the SITS Investigators. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. Stroke. 2012;43:1524–1531. doi: 10.1161/STROKEAHA.111.644815.
- 130. Wu W, Huo X, Zhao X, Liao X, Wang C, Pan Y, Wang Y, Wang Y; TIMS-CHINA Investigators. Relationship between blood pressure and outcomes in acute ischemic stroke patients administered lytic medication in the TIMS-China Study. *PLoS One*. 2016;11:e0144260. doi: 10.1371/journal.pone.0144260.
- 131. Endo K, Kario K, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, Furui E, Kimura K, Hasegawa Y, Okada Y, Okuda S, Namekawa M, Miyagi T, Osaki M, Minematsu K, Toyoda K. Impact of early blood pressure variability on stroke outcomes after thrombolysis: the

- SAMURAI rt-PA Registry. *Stroke*. 2013;44:816–818. doi: 10.1161/STROKEAHA.112.681007.
- Waltimo T, Haapaniemi E, Surakka IL, Melkas S, Sairanen T, Sibolt G, Tatlisumak T, Strbian D. Post-thrombolytic blood pressure and symptomatic intracerebral hemorrhage. *Eur J Neurol*. 2016;23:1757–1762. doi: 10.1111/ene.13118.
- 133. Liu K, Yan S, Zhang S, Guo Y, Lou M. Systolic blood pressure variability is associated with severe hemorrhagic transformation in the early stage after thrombolysis. *Transl Stroke Res.* 2016;7:186–191. doi: 10.1007/s12975-016-0458-6.
- 134. Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, Finfer S, Beasley R, Hyam J, Menon D, Rowan K, Myburgh J. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. *Intensive Care Med*. 2015;41:823–832. doi: 10.1007/s00134-015-3676-6.
- 135. Lyden P, Hemmen T, Grotta J, Rapp K, Ernstrom K, Rzesiewicz T, Parker S, Concha M, Hussain S, Agarwal S, Meyer B, Jurf J, Altafullah I, Raman R. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Stroke. 2016;47:2888–2895. doi: 10.1161/STROKEAHA.116.014200.
- 136. Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, Dippel DW, Kappelle LJ, van der Worp HB. COOLIST (Cooling for Ischemic Stroke Trial): a multicenter, open, randomized, phase ii, clinical trial. Stroke. 2017;48:219–221. doi: 10.1161/STROKEAHA.116.014757.
- 137. Piironen K, Tiainen M, Mustanoja S, Kaukonen KM, Meretoja A, Tatlisumak T, Kaste M. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: a randomized controlled trial. Stroke. 2014;45:486–491. doi: 10.1161/STROKEAHA.113.003180.
- 138. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD; for the ICTuS-L Investigators. Intravenous Thrombolysis Plus Hypothermia for Acute Treatment of Ischemic Stroke (ICTuS-L): final results. Stroke. 2010;41:2265–2270. doi: 10.1161/STROKEAHA.110.592295.
- 139. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363:768–774. doi: 10.1016/S0140-6736(04)15692-4.
- 140. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. *Lancet*. 2012;379:2364–2372. doi: 10.1016/S0140-6736(12)60738-7.
- 141. Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G; SITS-MOST investigators. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. *Lancet*. 2007;369:275–282. doi: 10.1016/S0140-6736(07)60149-4.
- 142. IST-3 Collaborative Group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, Ricci S, Murray V, Berge E, Slot KB, Hankey GJ, Correia M, Peeters A, Matz K, Lyrer P, Gubitz G, Phillips SJ, Arauz A. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial [IST-3]): a randomised controlled trial. Lancet. 2012;379:2352–2363.
- 143. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, Broderick JP, Chen X, Chen G, Sharma VK, Kim JS, Thang NH, Cao Y, Parsons MW, Levi C, Huang Y, Olavarría VV, Demchuk AM, Bath PM, Donnan GA, Martins S, Pontes-Neto OM, Silva F, Ricci S, Roffe C, Pandian J, Billot L, Woodward M, Li Q, Wang X, Wang J, Chalmers J; ENCHANTED Investigators and Coordinators. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. N Engl J Med. 2016;374:2313–2323. doi: 10.1056/NEJMoa1515510.
- 144. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–1329. doi: 10.1056/NEJMoa0804656.
- 145. Bluhmki E, Chamorro A, Dávalos A, Machnig T, Sauce C, Wahlgren N, Wardlaw J, Hacke W. Stroke treatment with alteplase given 3.0-4.5 h

- after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial. *Lancet Neurol*. 2009;8:1095–1102. doi: 10.1016/S1474-4422(09)70264-9.
- 146. Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO, Toni D, Ringleb P; SITS Investigators. Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR. *Lancet Neurol*. 2010;9:866–874. doi: 10.1016/S1474-4422(10)70165-4.
- 147. Romano JG, Smith EE, Liang L, Gardener H, Camp S, Shuey L, Cook A, Campo-Bustillo I, Khatri P, Bhatt DL, Fonarow GC, Sacco RL, Schwamm LH. Outcomes in mild acute ischemic stroke treated with intravenous thrombolysis: a retrospective analysis of the Get With the Guidelines-Stroke registry. *JAMA Neurol.* 2015;72:423–431. doi: 10.1001/jamaneurol.2014.4354.
- 148. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, Fonarow GC, Smith EE, Schwamm LH. Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from Get With The Guidelines–Stroke. Stroke. 2017;48:686–691. doi: 10.1161/STROKEAHA.116.015412.
- 149. Sloan MA, Price TR, Petito CK, Randall AM, Solomon RE, Terrin ML, Gore J, Collen D, Kleiman N, Feit F. Clinical features and pathogenesis of intracerebral hemorrhage after rt-PA and heparin therapy for acute myocardial infarction: the Thrombolysis in Myocardial Infarction (TIMI) II Pilot and Randomized Clinical Trial combined experience. *Neurology*. 1995;45:649–658.
- 150. Mahaffey KW, Granger CB, Sloan MA, Green CL, Gore JM, Weaver WD, White HD, Simoons ML, Barbash GI, Topol EJ, Califf RM. Neurosurgical evacuation of intracranial hemorrhage after thrombolytic therapy for acute myocardial infarction: experience from the GUSTO-I trial: Global Utilization of Streptokinase and Tissue-Plasminogen Activator (tPA) for Occluded Coronary Arteries. Am Heart J. 1999;138(pt 1):493–499.
- Goldstein JN, Marrero M, Masrur S, Pervez M, Barrocas AM, Abdullah A, Oleinik A, Rosand J, Smith EE, Dzik WH, Schwamm LH. Management of thrombolysis-associated symptomatic intracerebral hemorrhage. *Arch Neurol.* 2010;67:965–969. doi: 10.1001/archneurol.2010.175.
- French KF, White J, Hoesch RE. Treatment of intracerebral hemorrhage with tranexamic acid after thrombolysis with tissue plasminogen activator. *Neurocrit Care*. 2012;17:107–111. doi: 10.1007/s12028-012-9681-5.
- 153. Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. *JAMA Neurol*. 2014;71:1181–1185. doi: 10.1001/jamaneurol.2014.1210.
- 154. Yaghi S, Haggiagi A, Sherzai A, Marshall RS, Agarwal S. Use of recombinant factor VIIa in symptomatic intracerebral hemorrhage following intravenous thrombolysis. *Clin Pract*. 2015;5:756. doi: 10.4081/cp.2015.756.
- 155. Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S, Sands KA, Noorian AR, Blum CA, Chaudhary S, Schwamm LH, Liebeskind DS, Marshall RS, Willey JZ. Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study. JAMA Neurol. 2015;72:1451–1457. doi: 10.1001/jamaneurol.2015.2371.
- 156. Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, Silver B, Thompson B, Furie KL, Yaghi S. Therapies for hemorrhagic transformation in acute ischemic stroke. Curr Treat Options Neurol. 2017;19:1. doi: 10.1007/s11940-017-0438-5.
- 157. Frontera JA, Lewin JJ 3rd, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, del Zoppo GJ, Kumar MA, Peerschke EI, Stiefel MF, Teitelbaum JS, Wartenberg KE, Zerfoss CL. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for health-care professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care. 2016;24:6–46. doi: 10.1007/s12028-015-0222-x.
- Foster-Goldman A, McCarthy D. Angioedema from recombinant TPA administration: case report and pathophysiology review. *Am J Ther*. 2013;20:691–693. doi: 10.1097/MJT.0b013e3182799083.
- 159. Gorski EM, Schmidt MJ. Orolingual angioedema with alteplase administration for treatment of acute ischemic stroke. *J Emerg Med*. 2013;45:e25–e26. doi: 10.1016/j.jemermed.2013.02.004.
- Lewis LM. Angioedema: etiology, pathophysiology, current and emerging therapies. *J Emerg Med.* 2013;45:789–796. doi: 10.1016/j. jemermed.2013.03.045.
- 161. Lin SY, Tang SC, Tsai LK, Yeh SJ, Hsiao YJ, Chen YW, Chen KH, Yip BS, Shen LJ, Wu FL, Jeng JS. Orolingual angioedema after alteplase

therapy of acute ischaemic stroke: incidence and risk of prior angiotensin-converting enzyme inhibitor use. *Eur J Neurol*. 2014;21:1285–1291. doi: 10.1111/ene.12472.

- 162. Correia AS, Matias G, Calado S, Lourenço A, Viana-Baptista M. Orolingual angiodema associated with alteplase treatment of acute stroke: a reappraisal. *J Stroke Cerebrovasc Dis.* 2015;24:31–40. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.045.
- O'Carroll CB, Aguilar MI. Management of postthrombolysis hemorrhagic and orolingual angioedema complications. *Neurohospitalist*. 2015;5:133–141. doi: 10.1177/1941874415587680.
- 164. Myslimi F, Caparros F, Dequatre-Ponchelle N, Moulin S, Gautier S, Girardie P, Cordonnier C, Bordet R, Leys D. Orolingual angioedema during or after thrombolysis for cerebral ischemia. *Stroke*. 2016;47:1825–1830. doi: 10.1161/STROKEAHA.116.013334.
- 165. Pahs L, Droege C, Kneale H, Pancioli A. A novel approach to the treatment of orolingual angioedema after tissue plasminogen activator administration. *Ann Emerg Med.* 2016;68:345–348. doi: 10.1016/j. annemergmed.2016.02.019.
- 166. Jeong HG, Kim BJ, Yang MH, Han MK, Bae HJ, Lee SH. Stroke outcomes with use of antithrombotics within 24 hours after recanalization treatment. *Neurology*. 2016;87:996–1002. doi: 10.1212/WNL. 0000000000003083.
- 167. von Kummer R, Mori E, Truelsen T, Jensen JS, Grønning BA, Fiebach JB, Lovblad KO, Pedraza S, Romero JM, Chabriat H, Chang KC, Dávalos A, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A, Albers GW; for the DIAS-4 Investigators. Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 Trial (Efficacy and Safety Study of Desmoteplase to Treat Acute Ischemic Stroke). Stroke. 2016;47:2880–2887. doi: 10.1161/STROKEAHA.116.013715.
- 168. Albers GW, von Kummer R, Truelsen T, Jensen JK, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. *Lancet Neurol*. 2015;14:575–584. doi: 10.1016/S1474-4422(15)00047-2.
- 169. Haley EC Jr, Thompson JL, Grotta JC, Lyden PD, Hemmen TG, Brown DL, Fanale C, Libman R, Kwiatkowski TG, Llinas RH, Levine SR, Johnston KC, Buchsbaum R, Levy G, Levin B; for the Tenecteplase in Stroke Investigators. Phase IIB/III trial of tenecteplase in acute ischemic stroke: results of a prematurely terminated randomized clinical trial. Stroke. 2010;41:707–711. doi: 10.1161/STROKEAHA. 109.572040.
- 170. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M, Tobro H, Kaur K, Stankiewicz M, Carlsson M, Morsund Å, Idicula T, Aamodt AH, Lund C, Næss H, Waje-Andreassen U, Thomassen L. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. *Lancet Neurol*. 2017;16:781–788. doi: 10.1016/S1474-4422(17)30253-3.
- 171. Nacu A, Kvistad CE, Naess H, Øygarden H, Logallo N, Assmus J, Waje-Andreassen U, Kurz KD, Neckelmann G, Thomassen L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. Stroke. 2017;48:335–341. doi: 10.1161/STROKEAHA.116.014644.
- 172. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *Lancet*. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X.
- 173. Campbell BC, Hill MD, Rubiera M, Menon BK, Demchuk A, Donnan GA, Roy D, Thornton J, Dorado L, Bonafe A, Levy EI, Diener HC, Hernández-Pérez M, Pereira VM, Blasco J, Quesada H, Rempel J, Jahan R, Davis SM, Stouch BC, Mitchell PJ, Jovin TG, Saver JL, Goyal M. Safety and efficacy of solitaire stent thrombectomy: individual patient data meta-analysis of randomized trials. Stroke. 2016;47:798–806. doi: 10.1161/STROKEAHA.115.012360.
- 174. Bush CK, Kurimella D, Cross LJ, Conner KR, Martin-Schild S, He J, Li C, Chen J, Kelly T. Endovascular treatment with stent-retriever devices

- for acute ischemic stroke: a meta-analysis of randomized controlled trials. *PLoS One*. 2016;11:e0147287. doi: 10.1371/journal.pone.0147287.
- 175. Lemmens R, Hamilton SA, Liebeskind DS, Tomsick TA, Demchuk AM, Nogueira RG, Marks MP, Jahan R, Gralla J, Yoo AJ, Yeatts SD, Palesch YY, Saver JL, Pereira VM, Broderick JP, Albers GW, Lansberg MG; DEFUSE 2, IMS III, STAR, and SWIFT Trialists; DEFUSE 2 IMS III STAR and SWIFT Trialists. Effect of endovascular reperfusion in relation to site of arterial occlusion. *Neurology*. 2016;86:762–770. doi: 10.1212/WNL.00000000000002399.
- 176. Yoo AJ, Simonsen CZ, Prabhakaran S, Chaudhry ZA, Issa MA, Fugate JE, Linfante I, Liebeskind DS, Khatri P, Jovin TG, Kallmes DF, Dabus G, Zaidat OO; for the Cerebral Angiographic Revascularization Grading Collaborators. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy. Stroke. 2013;44:2509–2512. doi: 10.1161/STROKEAHA.113.001990.
- 177. Marks MP, Lansberg MG, Mlynash M, Kemp S, McTaggart R, Zaharchuk G, Bammer R, Albers GW; DEFUSE 2 Investigators. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome. *J Neurointerv Surg*. 2014;6:724–728. doi: 10.1136/neurintsurg-2013-010973.
- 178. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, Saleme S, Costalat V, Bracard S, Desal H, Mazighi M, Consoli A, Piotin M; ASTER Trial Investigators. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. *JAMA*. 2017;318:443–452. doi: 10.1001/jama.2017.9644.
- 179. Dippel DW, Majoie CB, Roos YB, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Lingsma HF, Koudstaal PJ, Treurniet KM, van den Berg LA, Beumer D, Fransen PS, Berkhemer OA; for the MR CLEAN Investigators. Influence of device choice on the effect of intraarterial treatment for acute ischemic stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). Stroke. 2016;47:2574–2581. doi: 10.1161/STROKEAHA.116.013929.
- 180. Berkhemer OA, van den Berg LA, Fransen PS, Beumer D, Yoo AJ, Lingsma HF, Schonewille WJ, van den Berg R, Wermer MJ, Boiten J, Lycklama À Nijeholt GJ, Nederkoorn PJ, Hollmann MW, van Zwam WH, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW, Roos YB; MR CLEAN Investigators. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. Neurology. 2016;87:656–664. doi: 10.1212/WNL.000000000000002976.
- 181. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, Dunker D, Schnabel K, Wikholm G, Hellström M, Ricksten SE. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (Anesthesia During Stroke). Stroke. 2017;48:1601–1607. doi: 10.1161/STROKEAHA.117.016554.
- 182. Schönenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, Nagel S, Klose C, Pfaff J, Bendszus M, Ringleb PA, Kieser M, Möhlenbruch MA, Bösel J. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. *JAMA*. 2016;316:1986–1996. doi: 10.1001/jama.2016.16623.
- 183. Jovin TG, Saver JL, Ribo M, Pereira V, Furlan A, Bonafe A, Baxter B, Gupta R, Lopes D, Jansen O, Smith W, Gress D, Hetts S, Lewis RJ, Shields R, Berry SM, Graves TL, Malisch T, Rai A, Sheth KN, Liebeskind DS, Nogueira RG. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. *Int J Stroke*. 2017;12:641–652. doi: 10.1177/1747493017710341.
- 184. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke: International Stroke Trial Collaborative Group. *Lancet*. 1997;349:1569–1581.
- 185. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke: CAST (Chinese Acute Stroke Trial) Collaborative Group. *Lancet*. 1997;349:1641–1649.
- Sandercock PA, Counsell C, Tseng MC, Cecconi E. Oral antiplatelet therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD000029.
- 187. Siebler M, Hennerici MG, Schneider D, von Reutern GM, Seitz RJ, Röther J, Witte OW, Hamann G, Junghans U, Villringer A, Fiebach JB.

- Safety of Tirofiban in acute Ischemic Stroke: the SaTIS trial. *Stroke*. 2011;42:2388–2392. doi: 10.1161/STROKEAHA.110.599662.
- 188. Pancioli AM, Broderick J, Brott T, Tomsick T, Khoury J, Bean J, del Zoppo G, Kleindorfer D, Woo D, Khatri P, Castaldo J, Frey J, Gebel J Jr, Kasner S, Kidwell C, Kwiatkowski T, Libman R, Mackenzie R, Scott P, Starkman S, Thurman RJ; for the CLEAR Trial Investigators. The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial. Stroke. 2008;39:3268–3276. doi: 10.1161/STROKEAHA.108.517656.
- 189. Adeoye O, Sucharew H, Khoury J, Tomsick T, Khatri P, Palesch Y, Schmit PA, Pancioli AM, Broderick JP; for the CLEAR-ER, IMS III, and ALIAS Part 2 Investigators. Recombinant tissue-type plasminogen activator plus eptifibatide versus recombinant tissue-type plasminogen activator alone in acute ischemic stroke: propensity score-matched post hoc analysis. Stroke. 2015;46:461–464. doi: 10.1161/STROKEAHA.114.006743.
- 190. Adeoye O, Sucharew H, Khoury J, Vagal A, Schmit PA, Ewing I, Levine SR, Demel S, Eckerle B, Katz B, Kleindorfer D, Stettler B, Woo D, Khatri P, Broderick JP, Pancioli AM. Combined approach to lysis utilizing eptifibatide and recombinant tissue-type plasminogen activator in acute ischemic stroke-full dose regimen stroke trial. *Stroke*. 2015;46:2529–2533. doi: 10.1161/STROKEAHA.115.010260.
- Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I. Glycoprotein Ilb-IIIa inhibitors for acute ischaemic stroke. Cochrane Database Syst Rev. 2014;CD005208.
- 192. Adams HP Jr, Effron MB, Torner J, Dávalos A, Frayne J, Teal P, Leclerc J, Oemar B, Padgett L, Barnathan ES, Hacke W; for the AbESTT-II Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke. 2008;39:87–99. doi: 10.1161/STROKEAHA.106.476648.
- 193. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC; CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369:11–19. doi: 10.1056/NEJMoa1215340.
- 194. Wang Y, Pan Y, Zhao X, Li H, Wang D, Johnston SC, Liu L, Meng X, Wang A, Wang C, Wang Y; on behalf of the CHANCE Investigators. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) trial: one-year outcomes. *Circulation*. 2015;132:40–46. doi: 10.1161/CIRCULATIONAHA.114.014791.
- 195. Johnston SC, Easton JD, Farrant M, Barsan W, Battenhouse H, Conwit R, Dillon C, Elm J, Lindblad A, Morgenstern L, Poisson SN, Palesch Y. Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) trial: rationale and design. *Int J Stroke*. 2013;8:479–483. doi: 10.1111/ijs.12129.
- Johnston SC, Amarenco P. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N Engl J Med. 2016;375:1395. doi: 10.1056/ NEJMc1610106.
- 197. Whiteley WN, Adams HP Jr, Bath PM, Berge E, Sandset PM, Dennis M, Murray GD, Wong KS, Sandercock PA. Targeted use of heparin, heparinoids, or low-molecular-weight heparin to improve outcome after acute ischaemic stroke: an individual patient data meta-analysis of randomised controlled trials. *Lancet Neurol*. 2013;12:539–545. doi: 10.1016/S1474-4422(13)70079-6.
- Sandercock PA, Counsell C, Kane EJ. Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev. 2015:CD000024.
- 199. Yi X, Lin J, Wang C, Zhang B, Chi W. Low-molecular-weight heparin is more effective than aspirin in preventing early neurologic deterioration and improving six-month outcome. *J Stroke Cerebrovasc Dis.* 2014;23:1537–1544. doi: 10.1016/j.jstrokecerebrovasdis.2013.12.036.
- 200. Wada T, Yasunaga H, Horiguchi H, Matsubara T, Fushimi K, Nakajima S, Yahagi N. Outcomes of argatroban treatment in patients with atherothrombotic stroke: observational nationwide study in Japan. *Stroke*. 2016;47:471–476. doi: 10.1161/STROKEAHA.115.011250.
- Kate M, Gioia L, Buck B, Sivakumar L, Jeerakathil T, Shuaib A, Butcher K. Dabigatran therapy in acute ischemic stroke patients without atrial fibrillation. Stroke. 2015;46:2685–2687. doi: 10.1161/ STROKEAHA.115.010383.
- 202. Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, Marcheselli S, Rueckert C, Pezzini A, Poli L, Padovani A, Csiba L, Szabó L, Sohn SI, Tassinari T, Abdul-Rahim AH, Michel P, Cordier M, Vanacker P, Remillard S, Alberti A, Venti M, Scoditti U, Denti L, Orlandi G, Chiti A, Gialdini G, Bovi P, Carletti M, Rigatelli A, Putaala J, Tatlisumak T, Masotti L, Lorenzini G, Tassi R, Guideri F, Martini G, Tsivgoulis G, Vadikolias K, Liantinioti C, Corea F, Del Sette M, Ageno W, De

- Lodovici ML, Bono G, Baldi A, D'Anna S, Sacco S, Carolei A, Tiseo C, Acciarresi M, D'Amore C, Imberti D, Zabzuni D, Doronin B, Volodina V, Consoli D, Galati F, Pieroni A, Toni D, Monaco S, Baronello MM, Barlinn K, Pallesen LP, Kepplinger J, Bodechtel U, Gerber J, Deleu D, Melikyan G, Ibrahim F, Akhtar N, Mosconi MG, Bubba V, Silvestri I, Lees KR. Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study. *Stroke*. 2015;46:2175–2182. doi: 10.1161/STROKEAHA.115.008891.
- 203. Mokin M, Kass-Hout T, Kass-Hout O, Radovic V, Siddiqui AH, Levy EI, Snyder KV. Intravenous heparin for the treatment of intraluminal thrombus in patients with acute ischemic stroke: a case series. *J Neurointerv Surg.* 2013;5:144–150. doi: 10.1136/neurintsurg-2011-010134.
- 204. Vellimana AK, Kadkhodayan Y, Rich KM, Cross DT 3rd, Moran CJ, Zazulia AR, Lee JM, Chicoine MR, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Symptomatic patients with intraluminal carotid artery thrombus: outcome with a strategy of initial anticoagulation. *J Neurosurg*. 2013;118:34–41. doi: 10.3171/2012.9.JNS12406.
- 205. Barreto AD, Alexandrov AV, Lyden P, Lee J, Martin-Schild S, Shen L, Wu TC, Sisson A, Pandurengan R, Chen Z, Rahbar MH, Balucani C, Barlinn K, Sugg RM, Garami Z, Tsivgoulis G, Gonzales NR, Savitz SI, Mikulik R, Demchuk AM, Grotta JC. The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: final results of a pilot safety study. Stroke. 2012;43:770–775. doi: 10.1161/STROKEAHA. 111.625574.
- 206. Barreto AD, Ford GA, Shen L, Pedroza C, Tyson J, Cai C, Rahbar MH, Grotta JC; on behalf of the ARTSS-2 Investigators. Randomized, multicenter trial of ARTSS-2 (Argatroban With Recombinant Tissue Plasminogen Activator for Acute Stroke). Stroke. 2017;48:1608–1616. doi: 10.1161/STROKEAHA.117.016720.
- 207. Gioia LC, Kate M, Sivakumar L, Hussain D, Kalashyan H, Buck B, Bussiere M, Jeerakathil T, Shuaib A, Emery D, Butcher K. Early rivaroxaban use after cardioembolic stroke may not result in hemorrhagic transformation: a prospective magnetic resonance imaging study. *Stroke*. 2016;47:1917–1919. doi: 10.1161/STROKEAHA.116.013491.
- Chang TS, Jensen MB. Haemodilution for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000103
- 209. Ginsberg MD, Palesch YY, Hill MD, Martin RH, Moy CS, Barsan WG, Waldman BD, Tamariz D, Ryckborst KJ; ALIAS and Neurological Emergencies Treatment Trials (NETT) Investigators. High-dose albumin treatment for acute ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-controlled trial. *Lancet Neurol*. 2013;12:1049–1058. doi: 10.1016/S1474-4422(13)70223-0.
- 210. Martin RH, Yeatts SD, Hill MD, Moy CS, Ginsberg MD, Palesch YY; for the ALIAS Parts 1 and 2 and NETT Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: analysis of the combined data from parts 1 and 2. Stroke. 2016;47:2355–2359. doi: 10.1161/STROKEAHA.116.012825.
- Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. *Ann Med.* 2010;42:576–586. doi: 10.3109/07853890.2010.532811.
- 212. Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. *Curr Cardiol Rep.* 2010;12:29–33. doi: 10.1007/s11886-009-0071-3.
- 213. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J; for the NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40:1359–1364. doi: 10.1161/STROKEAHA.109.547547.
- 214. Hacke W, Schelinger PD, Albers GW, Bornstein NM, Dahlof BS, Kasner SE, Howard G, Shuaib A, Richieri SP, Dilly S, Zivin J. Transcranial laser therapy (TLT) for acute ischemic stroke: results of NEST 3, a pivotal phase III randomized clinical trial (RCT). *Cerebrovasc Dis*. 2013;35:191.
- 215. Stead LG, Gilmore RM, Vedula KC, Weaver AL, Decker WW, Brown RD Jr. Impact of acute blood pressure variability on ischemic stroke outcome. *Neurology*. 2006;66:1878–1881. doi: 10.1212/01. wnl.0000219628.78513.b5.
- 216. Kaste M, Fogelholm R, Erilä T, Palomäki H, Murros K, Rissanen A, Sarna S. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke. *Stroke*. 1994;25:1348–1353.

217. Wahlgren NG, MacMahon DG, De Keyser J, Indredavik B, Ryman T. The Intravenous Nimodipine West European Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke. *Cerebrovasc Dis*. 1994:4:204–210

- Horn J, de Haan RJ, Vermeulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke. 2001;32:461–465.
- 219. Schrader J, Lüders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhäupl K, Diener HC, Dominiak P; on behalf of the Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors. Stroke. 2003;34:1699–1703. doi: 10.1161/01.STR.0000075777.18006.89.
- 220. Eveson DJ, Robinson TG, Potter JF. Lisinopril for the treatment of hypertension within the first 24 hours of acute ischemic stroke and follow-up. *Am J Hypertens*. 2007;20:270–277. doi: 10.1016/j. amjhyper.2006.08.005.
- 221. Bath PM, Martin RH, Palesch Y, Cotton D, Yusuf S, Sacco R, Diener HC, Toni D, Estol C, Roberts R; for the PRoFESS Study Group. Effect of telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke: a PRoFESS subgroup analysis. Stroke. 2009;40:3541–3546. doi: 10.1161/STROKEAHA.109.555623.
- 222. Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, Jagger C. Controlling Hypertension and Hypotension Immediately Post-Stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial. *Lancet Neurol*. 2009;8:48–56. doi: 10.1016/S1474-4422(08)70263-1.
- 223. Robinson TG, Potter JF, Ford GA, Bulpitt CJ, Chernova J, Jagger C, James MA, Knight J, Markus HS, Mistri AK, Poulter NR; COSSACS Investigators. Effects of antihypertensive treatment after acute stroke in the Continue or Stop Post-Stroke Antihypertensives Collaborative Study (COSSACS): a prospective, randomised, open, blinded-endpoint trial. *Lancet Neurol*. 2010;9:767–775. doi: 10.1016/S1474-4422(10)70163-0.
- 224. Sandset EC, Bath PM, Boysen G, Jatuzis D, Körv J, Lüders S, Murray GD, Richter PS, Roine RO, Terént A, Thijs V, Berge E; SCAST Study Group. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. *Lancet*. 2011;377:741–750. doi: 10.1016/S0140-6736(11)60104-9.
- 225. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, Tong W, Liu C, Xu T, Ju Z, Peng Y, Peng H, Li Q, Geng D, Zhang J, Li D, Zhang F, Guo L, Sun Y, Wang X, Cui Y, Li Y, Ma D, Yang G, Gao Y, Yuan X, Bazzano LA, Chen J; CATIS Investigators. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. *JAMA*. 2014;311:479–489. doi: 10.1001/jama.2013.282543.
- Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev. 2014:CD000039.
- 227. Oh MS, Yu KH, Hong KS, Kang DW, Park JM, Bae HJ, Koo J, Lee J, Lee BC; Valsartan Efficacy oN modesT blood pressUre REduction in acute ischemic stroke (VENTURE) Study Group. Modest blood pressure reduction with valsartan in acute ischemic stroke: a prospective, randomized, open-label, blinded-end-point trial. *Int J Stroke*. 2015;10:745–751. doi: 10.1111/ijs.12446.
- 228. Enos Trial Investigators, Bath PM, Woodhouse L, Scutt P, Krishnan K, Wardlaw JM, Bereczki D, Sprigg N, Berge E, Beridze M, Caso V, Chen C, Christensen H, Collins R, El Etribi A, Laska AC, Lees KR, Ozturk S, Phillips S, Pocock S, de Silva HA, Szatmari S, Utton S. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. Lancet. 2015;385:617–28.
- 229. Lee M, Ovbiagele B, Hong KS, Wu YL, Lee JE, Rao NM, Feng W, Saver JL. Effect of blood pressure lowering in early ischemic stroke: meta-analysis. *Stroke*. 2015;46:1883–1889. doi: 10.1161/STROKEAHA.115.009552.
- 230. Woodhouse L, Scutt P, Krishnan K, Berge E, Gommans J, Ntaios G, Wardlaw J, Sprigg N, Bath PM; on behalf of the ENOS Investigators. Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke: subgroup analysis of the Efficacy of Nitric Oxide in Stroke (ENOS) Trial. Stroke. 2015;46:3194–3201. doi: 10.1161/STROKEAHA.115.009647.
- 231. Rai N, Prasad K, Bhatia R, Vibha D, Singh MB, Rai VK, Kumar A. Development and implementation of acute stroke care pathway in a tertiary care hospital in India: a cluster-randomized study. *Neurol India*. 2016;64(suppl):S39–S45. doi: 10.4103/0028-3886.178038.
- 232. Middleton S, McElduff P, Ward J, Grimshaw JM, Dale S, D'Este C, Drury P, Griffiths R, Cheung NW, Quinn C, Evans M, Cadilhac D, Levi C; QASC Trialists Group. Implementation of evidence-based treatment

- protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): a cluster randomised controlled trial. *Lancet*. 2011;378:1699–1706. doi: 10.1016/S0140-6736(11)61485-2.
- Miles A, Zeng IS, McLauchlan H, Huckabee ML. Cough reflex testing in dysphagia following stroke: a randomized controlled trial. *J Clin Med Res*. 2013;5:222–233. doi: 10.4021/jocmr1340w.
- 234. Joundi RA, Martino R, Saposnik G, Giannakeas V, Fang J, Kapral MK. Predictors and outcomes of dysphagia screening after acute ischemic stroke. Stroke. 2017;48:900–906. doi: 10.1161/STROKEAHA.116.015332.
- 235. Dennis M, Lewis S, Cranswick G, Forbes J; FOOD Trial Collaboration. FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke. *Health Technol Assess*. 2006;10:iii–iv, ix.
- Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke. *Cochrane Database Syst Rev.* 2012;10:CD000323. doi: 10.1002/14651858.CD000323.pub2.
- 237. Sørensen RT, Rasmussen RS, Overgaard K, Lerche A, Johansen AM, Lindhardt T. Dysphagia screening and intensified oral hygiene reduce pneumonia after stroke. *J Neurosci Nurs*. 2013;45:139–146. doi: 10.1097/JNN.0b013e31828a412c.
- Brady M, Furlanetto D, Hunter RV, Lewis S, Milne V. Staff-led interventions for improving oral hygiene in patients following stroke. *Cochrane Database Syst Rev.* 2006:CD003864.
- Wagner C, Marchina S, Deveau JA, Frayne C, Sulmonte K, Kumar S. Risk of stroke-associated pneumonia and oral hygiene. *Cerebrovasc Dis*. 2016;41:35–39. doi: 10.1159/000440733.
- 240. Dennis M, Caso V, Kappelle LJ, Pavlovic A, Sandercock P. European Stroke Organisation (ESO) guidelines for prophylaxis for venous thromboembolism in immobile patients with acute ischaemic stroke. Eur Stroke J. 2016:1:6–19.
- Meader N, Moe-Byrne T, Llewellyn A, Mitchell AJ. Screening for poststroke major depression: a meta-analysis of diagnostic validity studies. J Neurol Neurosurg Psychiatry. 2014;85:198–206. doi: 10.1136/ jnnp-2012-304194.
- 242. Towfighi A, Ovbiagele B, El Hussein N, Hackett ML, Jorge RE, Kissela BM, Mitchell PH, Skolarus LE, Whooley MA, Williams LS; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48:e30–e43. doi: 10.1161/STR.0000000000000113.
- AVERT Trial Collaboration Group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. *Lancet*. 2015;386:46–55.
- 244. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution's experience. *Neurosurgery*. 2003;53:1061–1605.
- Agarwalla PK, Stapleton CJ, Ogilvy CS. Craniectomy in acute ischemic stroke. *Neurosurgery*. 2014;74(suppl 1):S151–S162. doi: 10.1227/ NEU.0000000000000226.
- Mostofi K. Neurosurgical management of massive cerebellar infarct outcome in 53 patients. Surg Neurol Int. 2013;4:28. doi: 10.4103/2152-7806.107906.
- 247. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W; DECIMAL, DESTINY, and HAMLET Investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215–222. doi: 10.1016/S1474-4422(07)70036-4.
- 248. Maciel CB, Sheth KN. Malignant MCA stroke: an update on surgical decompression and future directions. *Curr Atheroscler Rep.* 2015;17:40. doi: 10.1007/s11883-015-0519-4.
- 249. Yang MH, Lin HY, Fu J, Roodrajeetsing G, Shi SL, Xiao SW. Decompressive hemicraniectomy in patients with malignant middle cerebral artery infarction: a systematic review and meta-analysis. *Surgeon*. 2015;13:230–240. doi: 10.1016/j.surge.2014.12.002.
- Alexander P, Heels-Ansdell D, Siemieniuk R, Bhatnagar N, Chang Y, Fei Y, Zhang Y, McLeod S, Prasad K, Guyatt G. Hemicraniectomy versus medical treatment with large MCA infarct: a review and meta-analysis. BMJ Open. 2016;6:e014390. doi: 10.1136/bmjopen-2016-014390.
- 251. Sundseth J, Sundseth A, Jacobsen EA, Pripp AH, Sorteberg W, Altmann M, Lindegaard KF, Berg-Johnsen J, Thommessen B. Predictors of early in-hospital death after decompressive craniectomy in swollen middle

- cerebral artery infarction. *Acta Neurochir (Wien)*. 2017;159:301–306. doi: 10.1007/s00701-016-3049-0.
- Suyama K, Horie N, Hayashi K, Nagata I. Nationwide survey of decompressive hemicraniectomy for malignant middle cerebral artery infarction in Japan. World Neurosurg. 2014;82:1158–1163. doi: 10.1016/j. wneu.2014.07.015.
- 253. Yu JW, Choi JH, Kim DH, Cha JK, Huh JT. Outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 70 years old. *J Cerebrovasc Endovasc Neurosurg*. 2012;14:65–74. doi: 10.7461/jcen.2012.14.2.65.
- 254. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, Gondan M, Schiller P, Limprecht R, Luntz S, Schneider H, Pinzer T, Hobohm C, Meixensberger J, Hacke W; DESTINY II Investigators. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med. 2014;370:1091–1100. doi: 10.1056/NEJMoa1311367.
- 255. Zhao J, Su YY, Zhang Y, Zhang YZ, Zhao R, Wang L, Gao R, Chen W, Gao D. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: a randomized controlled trial enrolling patients up to 80 years old. *Neurocrit Care*. 2012;17:161–171. doi: 10.1007/s12028-012-9703-3.
- Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. *Crit Care Med.* 2010;38:1348–1359. doi: 10.1097/CCM.0b013e3181d8cf2b.
- 257. Wan YH, Nie C, Wang HL, Huang CY. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: a meta-analysis. *J Stroke Cerebrovasc Dis.* 2014;23:2736–2747. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.017.
- Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH. Significance of acute multiple brain infarction on diffusion-weighted imaging. Stroke. 2000;31:688–694.
- Kang DW, Chalela JA, Ezzeddine MA, Warach S. Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. *Arch Neurol.* 2003;60:1730–1734. doi: 10.1001/archneur.60.12.1730.
- Cho AH, Kim JS, Jeon SB, Kwon SU, Lee DH, Kang DW. Mechanism of multiple infarcts in multiple cerebral circulations on diffusion-weighted imaging. J Neurol. 2007;254:924–930. doi: 10.1007/s00415-006-0397-3.
- Braemswig TB, Usnich T, Albach FN, Brunecker P, Grittner U, Scheitz JF, Fiebach JB, Nolte CH. Early new diffusion-weighted imaging lesions appear more often in stroke patients with a multiple territory lesion pattern. *Stroke*. 2013;44:2200–2204. doi: 10.1161/STROKEAHA.111.000810.
- 262. Depuydt S, Sarov M, Vandendries C, Guedj T, Cauquil C, Assayag P, Lambotte O, Ducreux D, Denier C. Significance of acute multiple infarcts in multiple cerebral circulations on initial diffusion weighted imaging in stroke patients. *J Neurol Sci.* 2014;337:151–155. doi: 10.1016/j. jns.2013.11.039.
- Rabinstein AA, Fugate JE, Mandrekar J, Burns JD, Seet RC, Dupont SA, Kauffman TJ, Asirvatham SJ, Friedman PA. Paroxysmal atrial fibrillation in cryptogenic stroke: a case-control study. *J Stroke Cerebrovasc Dis*. 2013;22:1405–1411. doi: 10.1016/j.jstrokecerebrovasdis.2013.05.013.
- 264. Bernstein RA, Di Lazzaro V, Rymer MM, Passman RS, Brachmann J, Morillo CA, Sanna T, Thijs V, Rogers T, Liu S, Ziegler PD, Diener HC. Infarct topography and detection of atrial fibrillation in cryptogenic stroke: results from CRYSTAL AF. *Cerebrovasc Dis.* 2015;40:91–96. doi: 10.1159/000437018.
- 265. Favilla CG, Ingala E, Jara J, Fessler E, Cucchiara B, Messé SR, Mullen MT, Prasad A, Siegler J, Hutchinson MD, Kasner SE. Predictors of finding occult atrial fibrillation after cryptogenic stroke. Stroke. 2015;46:1210–1215. doi: 10.1161/STROKEAHA.114.007763.
- 266. Sudacevschi V, Bertrand C, Chadenat ML, Tarnaud C, Pico F. Predictors of occult atrial fibrillation in one hundred seventy-one patients with cryptogenic transient ischemic attack and minor stroke. J Stroke Cerebrovasc Dis. 2016;25:2673–2677. doi: 10.1016/j. jstrokecerebrovasdis.2016.07.014.
- Novotny V, Thomassen L, Waje-Andreassen U, Naess H. Acute cerebral infarcts in multiple arterial territories associated with cardioembolism. *Acta Neurol Scand*. 2017;135:346–351. doi: 10.1111/ane.12606.
- Ois A, Cuadrado-Godia E, Rodríguez-Campello A, Jimenez-Conde J, Roquer J. High risk of early neurological recurrence in symptomatic carotid stenosis. *Stroke*. 2009;40:2727–2731. doi: 10.1161/STROKEAHA.109.548032.
- 269. De Rango P, Brown MM, Chaturvedi S, Howard VJ, Jovin T, Mazya MV, Paciaroni M, Manzone A, Farchioni L, Caso V. Summary of evidence on early carotid intervention for recently symptomatic stenosis based on

- meta-analysis of current risks. *Stroke*. 2015;46:3423–3436. doi: 10.1161/STROKEAHA.115.010764.
- 270. Marnane M, Ni Chroinin D, Callaly E, Sheehan OC, Merwick A, Hannon N, Horgan G, Kyne L, Moroney J, McCormack PM, Dolan E, Duggan J, Williams D, Crispino-O'Connell G, Kelly PJ. Stroke recurrence within the time window recommended for carotid endarterectomy. *Neurology*. 2011;77:738–743. doi: 10.1212/WNL.0b013e31822b00cf.
- Johansson EP, Arnerlöv C, Wester P. Risk of recurrent stroke before carotid endarterectomy: the ANSYSCAP study. *Int J Stroke*. 2013;8:220–227. doi: 10.1111/j.1747-4949.2012.00790.x.
- Strömberg S, Nordanstig A, Bentzel T, Österberg K, Bergström GM. Risk of early recurrent stroke in symptomatic carotid stenosis. *Eur J Vasc Endovasc Surg.* 2015;49:137–144. doi: 10.1016/j.ejvs.2014.11.004.
- 273. Kazandjian C, Kretz B, Lemogne B, Aboa Eboulé C, Béjot Y, Steinmetz E. Influence of the type of cerebral infarct and timing of intervention in the early outcomes after carotid endarterectomy for symptomatic stenosis. *J Vasc Surg.* 2016;63:1256–1261. doi: 10.1016/j.jvs.2015.10.097.
- Azzini C, Gentile M, De Vito A, Traina L, Sette E, Fainardi E, Mascoli F, Casetta I. Very early carotid endarterectomy after intravenous thrombolysis. *Eur J Vasc Endovasc Surg*. 2016;51:482–486. doi: 10.1016/j.eivs.2015.11.006.
- Adachi K, Sadato A, Hayakawa M, Maeda S, Hirose Y. Acute carotid artery stenting in symptomatic high-grade cervical carotid artery stenosis. *Neurosurg Rev.* 2017;40:45–51. doi: 10.1007/s10143-016-0737-4.
- Vasconcelos V, Cassola N, da Silva EM, Baptista-Silva JC. Immediate versus delayed treatment for recently symptomatic carotid artery stenosis. *Cochrane Database Syst Rev.* 2016;9:CD011401. doi: 10.1002/14651858.CD011401.pub2.
- 277. Ferguson GG, Eliasziw M, Barr HW, Clagett GP, Barnes RW, Wallace MC, Taylor DW, Haynes RB, Finan JW, Hachinski VC, Barnett HJ. The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients. Stroke. 1999;30:1751–1758.
- 278. Turan TN, Maidan L, Cotsonis G, Lynn MJ, Romano JG, Levine SR, Chimowitz MI; for the Warfarin-Aspirin Symptomatic Intracranial Disease Investigators. Failure of antithrombotic therapy and risk of stroke in patients with symptomatic intracranial stenosis. *Stroke*. 2009;40:505–509. doi: 10.1161/STROKEAHA.108.528281.
- 279. Jung JM, Kang DW, Yu KH, Koo JS, Lee JH, Park JM, Hong KS, Cho YJ, Kim JS, Kwon SU; on behalf of the TOSS-2 Investigators. Predictors of recurrent stroke in patients with symptomatic intracranial arterial stenosis. Stroke. 2012;43:2785–2787. doi: 10.1161/STROKEAHA.112.659185.
- 280. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, Levine SR, Chaturvedi S, Kasner SE, Benesch CG, Sila CA, Jovin TG, Romano JG; Warfarin-Aspirin Symptomatic Intracranial Disease Trial Investigators. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352:1305–1316. doi: 10.1056/NEJMoa043033.
- 281. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, Janis LS, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride GL Jr, Torbey MT, Zaidat OO, Rumboldt Z, Cloft HJ; SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:993–1003. doi: 10.1056/NEJMoa1105335.
- 282. Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride GL Jr, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–341. doi: 10.1016/S0140-6736(13)62038-3.
- 283. Lutsep HL, Barnwell SL, Larsen DT, Lynn MJ, Hong M, Turan TN, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Investigators. Outcome in patients previously on antithrombotic therapy in the SAMMPRIS trial: subgroup analysis. *Stroke*. 2015;46:775–779. doi: 10.1161/STROKEAHA.114.007752.
- 284. Chaturvedi S, Turan TN, Lynn MJ, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Trial Investigators. Do patient characteristics explain the differences in outcome between medically treated patients in SAMMPRIS and WASID? *Stroke*. 2015;46:2562–2567. doi: 10.1161/STROKEAHA.115.009656.

285. Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, Smith HH, Nichols F, Rogg J, Cloft HJ, Wechsler L, Saver J, Levine SR, Tegeler C, Adams R, Sloan M; Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) Trial Investigators. The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. Neurology. 2007;68:2099–2106. doi: 10.1212/01.wnl.0000261488.05906.c1.

- 286. Liebeskind DS, Kosinski AS, Saver JL, Feldmann E; SONIA Investigators. Computed tomography angiography in the Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) study. *Interv Neurol.* 2014;2:153–159. doi: 10.1159/000360952.
- Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke: EAFT (European Atrial Fibrillation Trial) Study Group. *Lancet*. 1993;342:1255–62.
- 288. Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. *Lancet Neurol*. 2015;14:377–387. doi: 10.1016/S1474-4422(15)70027-X.
- 289. Higgins P, MacFarlane PW, Dawson J, McInnes GT, Langhorne P, Lees KR. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial. *Stroke*. 2013;44:2525–2531. doi: 10.1161/STROKEAHA.113.001927.
- 290. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY, Ip J, Holcomb R, Akar JG, Halperin JL; IMPACT Investigators. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. *Eur Heart J.* 2015;36:1660–1668. doi: 10.1093/eurheartj/ehv115.
- 291. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F, Lindborg K, Brachmann J; CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370:2478–2486. doi: 10.1056/NEJMoa1313600.
- 292. Brachmann J, Morillo CA, Sanna T, Di Lazzaro V, Diener HC, Bernstein RA, Rymer M, Ziegler PD, Liu S, Passman RS. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the Cryptogenic Stroke and Underlying Atrial Fibrillation Trial. Circ Arrhythm Electrophysiol. 2016;9:e003333. doi: 10.1161/CIRCEP.115.003333.
- 293. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, Vaid H, O'Donnell M, Laupacis A, Côté R, Sharma M, Blakely JA, Shuaib A, Hachinski V, Coutts SB, Sahlas DJ, Teal P, Yip S, Spence JD, Buck B, Verreault S, Casaubon LK, Penn A, Selchen D, Jin A, Howse D, Mehdiratta M, Boyle K, Aviv R, Kapral MK, Mamdani M; EMBRACE Investigators and Coordinators. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370:2467–2477. doi: 10.1056/NEJMoa1311376.
- 294. Wachter R, Gröschel K, Gelbrich G, Hamann GF, Kermer P, Liman J, Seegers J, Wasser K, Schulte A, Jürries F, Messerschmid A, Behnke N, Gröschel S, Uphaus T, Grings A, Ibis T, Klimpe S, Wagner-Heck M, Arnold M, Protsenko E, Heuschmann PU, Conen D, Weber-Krüger M; Find-AF_{RANDOMISED} Investigators and Coordinators. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AF_{RANDOMISED}): an open-label randomised controlled trial. *Lancet Neurol.* 2017;16:282–290. doi: 10.1016/S1474-4422(17)30002-9.
- 295. Higgins P, Dawson J, MacFarlane PW, McArthur K, Langhorne P, Lees KR. Predictive value of newly detected atrial fibrillation paroxysms in patients with acute ischemic stroke, for atrial fibrillation after 90 days. Stroke. 2014;45:2134–2136. doi: 10.1161/STROKEAHA.114.005405.
- 296. Meenan RT, Saha S, Chou R, Swarztrauber K, Krages KP, O'Keefee-Rosetti M, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Effectiveness and cost-effectiveness of echocardiography and carotid imaging in the management of stroke. *Evid Rep Technol Assess (Summ)*. 2002:1–10.
- 297. McNamara RL, Lima JA, Whelton PK, Powe NR. Echocardiographic identification of cardiovascular sources of emboli to guide clinical management of stroke: a cost-effectiveness analysis. *Ann Intern Med*. 1997;127:775–787.
- 298. Meenan RT, Saha S, Chou R, Swarztrauber K, Pyle Krages K, O'Keeffe-Rosetti MC, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Cost-effectiveness of echocardiography to identify intracardiac thrombus among patients with first stroke or transient ischemic attack. *Med Decis Making*. 2007;27:161–177. doi: 10.1177/0272989X06297388.
- 299. Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, Settergren M, Sjöstrand C, Roine RO, Hildick-Smith D, Spence JD, Thomassen L; Gore REDUCE Clinical Study

- Investigators. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. *N Engl J Med*. 2017;377:1033–1042. doi: 10.1056/NEJMoa1707404.
- 300. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, Arquizan C, Béjot Y, Vuillier F, Detante O, Guidoux C, Canaple S, Vaduva C, Dequatre-Ponchelle N, Sibon I, Garnier P, Ferrier A, Timsit S, Robinet-Borgomano E, Sablot D, Lacour JC, Zuber M, Favrole P, Pinel JF, Apoil M, Reiner P, Lefebvre C, Guérin P, Piot C, Rossi R, Dubois-Randé JL, Eicher JC, Meneveau N, Lusson JR, Bertrand B, Schleich JM, Godart F, Thambo JB, Leborgne L, Michel P, Pierard L, Turc G, Barthelet M, Charles-Nelson A, Weimar C, Moulin T, Juliard JM, Chatellier G; CLOSE Investigators. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377:1011–1021. doi: 10.1056/NEJMoa1705915.
- Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368:1092–1100. doi: 10.1056/NEJMoa1301440.
- 302. Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med. 2017;377:1022–1032. doi: 10.1056/NEJMoa1610057.
- 303. Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, Andersen G, Ibrahim R, Schuler G, Walton AS, Wahl A, Windecker S, Jüni P; PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med. 2013;368:1083–1091. doi: 10.1056/NEJMoa1211716.
- 304. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, Felberg R, Herrmann H, Kar S, Landzberg M, Raizner A, Wechsler L; CLOSURE I Investigators. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366:991–999. doi: 10.1056/NEJMoa1009639.
- 305. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Ž, Riccardi G, Taskinen MR, Tokgozoglu L, Verschuren WM, Vlachopoulos C, Wood DA, Zamorano JL, 2016 ESC/EAS guidelines for the management of dyslipidaemias *Eur Heart J*. 2016;37:2999–3058. doi: 10.1093/eurheartj/ehw272.
- 306. NICE (National Institute for Health and Care Excellence). Cardiovascular disease: risk assessment and reduction, including lipid modification. 2014. https://www.nice.org.uk/guidance/cg181. Accessed January 3, 2018.
- 307. Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GB, McPherson R, Francis GA, Poirier P, Lau DC, Grover S, Genest J Jr, Carpentier AC, Dufour R, Gupta M, Ward R, Leiter LA, Lonn E, Ng DS, Pearson GJ, Yates GM, Stone JA, Ur E. 2012 Update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151–167. doi: 10.1016/j.cjca.2012.11.032.
- 308. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–1722. doi: 10.1056/NEJMoa1615664.
- Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med. 2017;377:1177–1187. doi: 10.1056/NEJMra1700365.
- Brown DL, Chervin RD, Hickenbottom SL, Langa KM, Morgenstern LB. Screening for obstructive sleep apnea in stroke patients: a costeffectiveness analysis. Stroke. 2005;36:1291–1293. doi: 10.1161/01. STR.0000166055.52742.2b.
- Pack AI, Pien GW. Update on sleep and its disorders. Annu Rev Med. 2011;62:447–460. doi: 10.1146/annurev-med-050409-104056.
- 312. Medeiros CA, de Bruin VM, Andrade GM, Coutinho WM, de Castro-Silva C, de Bruin PF. Obstructive sleep apnea and biomarkers of inflammation in ischemic stroke. *Acta Neurol Scand*. 2012;126:17–22. doi: 10.1111/j.1600-0404.2011.01589.x.
- 313. Camilo MR, Sander HH, Eckeli AL, Fernandes RM, Dos Santos-Pontelli TE, Leite JP, Pontes-Neto OM. SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea. Sleep Med. 2014;15:1021–1024. doi: 10.1016/j.sleep.2014.03.026.
- 314. Stahl SM, Yaggi HK, Taylor S, Qin L, Ivan CS, Austin C, Ferguson J, Radulescu R, Tobias L, Sico J, Vaz Fragoso CA, Williams LS, Lampert R, Miech EJ, Matthias MS, Kapoor J, Bravata DM. Infarct location and sleep apnea: evaluating the potential association in acute ischemic stroke. Sleep Med. 2015;16:1198–1203. doi: 10.1016/j.sleep.2015.07.003.

- 315. Parra O, Sánchez-Armengol A, Bonnin M, Arboix A, Campos-Rodríguez F, Pérez-Ronchel J, Durán-Cantolla J, de la Torre G, González Marcos JR, de la Peña M, Carmen Jiménez M, Masa F, Casado I, Luz Alonso M, Macarrón JL. Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial. *Eur Respir J.* 2011;37:1128–1136. doi: 10.1183/09031936.00034410.
- 316. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, Chen G, Du B, McArdle N, Mukherjee S, Tripathi M, Billot L, Li Q, Lorenzi-Filho G, Barbe F, Redline S, Wang J, Arima H, Neal B, White DP, Grunstein RR, Zhong N, Anderson CS; SAVE Investigators and Coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–931. doi: 10.1056/NEJMoa1606599.
- Côté R, Zhang Y, Hart RG, McClure LA, Anderson DC, Talbert RL, Benavente OR. ASA failure: does the combination ASA/clopidogrel confer better long-term vascular protection? *Neurology*. 2014;82:382–389. doi: 10.1212/WNL.0000000000000076.
- Lee M, Saver JL, Hong KS, Rao NM, Wu YL, Ovbiagele B. Antiplatelet regimen for patients with breakthrough strokes while on aspirin: a systematic review and meta-analysis. *Stroke*. 2017;48:2610–2613. doi: 10.1161/STROKEAHA.117.017895.
- Mohr JP. Evidence of aspirin and warfarin failure in the WARSS Study.
 Paper presented at: 27th International Stroke Conference; 2002; San Antonio, TX.
- John S, Katzan I. Recurrent stroke while on antiplatelet therapy. *Neurol Clin*. 2015;33:475–489. doi: 10.1016/j.ncl.2014.12.007.
- 321. Kasner SE, Lynn MJ, Chimowitz MI, Frankel MR, Howlett-Smith H, Hertzberg VS, Chaturvedi S, Levine SR, Stern BJ, Benesch CG, Jovin TG, Sila CA, Romano JG; Warfarin Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators. Warfarin vs aspirin for symptomatic intracranial stenosis: subgroup analyses from WASID. *Neurology*. 2006;67:1275–1278. doi: 10.1212/01.wnl.0000238506.76873.2f.
- Kim JT, Heo SH, Park MS, Chang J, Choi KH, Cho KH. Use of antithrombotics after hemorrhagic transformation in acute ischemic stroke. *PLoS One*. 2014;9:e89798. doi: 10.1371/journal.pone.0089798.
- 323. England TJ, Bath PM, Sare GM, Geeganage C, Moulin T, O'Neill D, Woimant F, Christensen H, De Deyn P, Leys D, Ringelstein EB; on behalf of the TAIST Investigators. Asymptomatic hemorrhagic transformation of infarction and its relationship with functional outcome and stroke subtype: assessment from the Tinzaparin in Acute Ischaemic Stroke Trial. Stroke. 2010;41:2834–2839. doi: 10.1161/STROKEAHA.109.573063.
- 324. CADISS Trial Investigators, Markus HS, Hayter E, Levi C, Feldman A, Venables G, Norris J. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial. *Lancet Neurol*. 2015;14:361–367.
- Larsson SC, King A, Madigan J, Levi C, Norris JW, Markus HS. Prognosis of carotid dissecting aneurysms: results from CADISS and a systematic review. *Neurology*. 2017;88:646–652. doi: 10.1212/ WNL.0000000000003617.
- Ahlhelm F, Benz RM, Ulmer S, Lyrer P, Stippich C, Engelter S. Endovascular treatment of cervical artery dissection: ten case reports and review of the literature. *Interv Neurol*. 2013;1:143–150. doi: 10.1159/000351687.
- Sanossian N, Saver JL, Liebeskind DS, Kim D, Razinia T, Ovbiagele B. Achieving target cholesterol goals after stroke: is in-hospital statin initiation the key? Arch Neurol. 2006;63:1081–1083. doi: 10.1001/ archneur.63.8.1081
- 328. Hong KS, Lee JS. Statins in acute ischemic stroke: a systematic review. *J Stroke*. 2015;17:282–301. doi: 10.5853/jos.2015.17.3.282.
- 329. Kennedy J, Hill MD, Ryckborst KJ, Eliasziw M, Demchuk AM, Buchan AM; FASTER Investigators. Fast assessment of stroke and transient ischaemic attack to prevent early recurrence (FASTER): a randomised controlled pilot trial. *Lancet Neurol*. 2007;6:961–969. doi: 10.1016/S1474-4422(07)70250-8.
- 330. Yoshimura S, Uchida K, Daimon T, Takashima R, Kimura K, Morimoto T; on behalf of the ASSORT Trial Investigator. Randomized controlled trial of early versus delayed statin therapy in patients with acute ischemic stroke: ASSORT trial (Administration of Statin on Acute Ischemic Stroke Patient). Stroke. 2017;48:3057–3063. doi: 10.1161/STROKEAHA.117.017623.
- Rigotti NA, Clair C, Munafo MR, Stead LF. Interventions for smoking cessation in hospitalised patients. *Cochrane Database Syst Rev.* 2012:CD001837.
- 332. Stead LF, Koilpillai P, Fanshawe TR, Lancaster T. Combined pharmacotherapy and behavioural interventions for smoking cessation. *Cochrane*

- Database Syst Rev. 2016;3:CD008286. doi: 10.1002/14651858. CD008286.pub3.
- Stead LF, Koilpillai P, Lancaster T. Additional behavioural support as an adjunct to pharmacotherapy for smoking cessation. *Cochrane Database* Syst Rev. 2015:CD009670.
- 334. Eisenberg MJ, Windle SB, Roy N, Old W, Grondin FR, Bata I, Iskander A, Lauzon C, Srivastava N, Clarke A, Cassavar D, Dion D, Haught H, Mehta SR, Baril JF, Lambert C, Madan M, Abramson BL, Dehghani P; for the EVITA Investigators. Varenicline for smoking cessation in hospitalized patients with acute coronary syndrome. *Circulation*. 2016;133:21–30. doi: 10.1161/CIRCULATIONAHA.115.019634.
- Lee MJ, Park E, Kim HC, Lee HS, Cha MJ, Kim YD, Heo JH, Nam HS. Timely interventions can increase smoking cessation rate in men with ischemic stroke. *J Korean Acad Nurs*. 2016;46:610–617. doi: 10.4040/ jkan.2016.46.4.610.
- Schwartz J, Dreyer RP, Murugiah K, Ranasinghe I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States. *Prehosp Emerg Care*. 2016;20:560–565. doi: 10.3109/10903127.2016.1139219.
- 337. Morgenstern LB, Gonzales NR, Maddox KE, Brown DL, Karim AP, Espinosa N, Moyé LA, Pary JK, Grotta JC, Lisabeth LD, Conley KM. A randomized, controlled trial to teach middle school children to recognize stroke and call 911: the Kids Identifying and Defeating Stroke Project. Stroke. 2007;38:2972–2978. doi: 10.1161/STROKEAHA.107.490078.
- 338. Carrera D, Campbell BC, Cortés J, Gorchs M, Querol M, Jiménez X, Millán M, Dávalos A, Pérez de la Ossa N. Predictive value of modifications of the prehospital rapid arterial occlusion evaluation scale for large vessel occlusion in patients with acute stroke. *J Stroke Cerebrovasc Dis*. 2017;26:74–77. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.032.
- 339. Kim JT, Chung PW, Starkman S, Sanossian N, Stratton SJ, Eckstein M, Pratt FD, Conwit R, Liebeskind DS, Sharma L, Restrepo L, Tenser MK, Valdes-Sueiras M, Gornbein J, Hamilton S, Saver JL; on behalf of the FAST-MAG Trial (Field Administration of Stroke Therapy–Magnesium) Nurse-Coordinators and Investigators. Field validation of the Los Angeles Motor Scale as a tool for paramedic assessment of stroke severity. Stroke. 2017;48:298–306. doi: 10.1161/STROKEAHA.116.015247.
- McMullan JT, Katz B, Broderick J, Schmit P, Sucharew H, Adeoye O. Prospective prehospital evaluation of the Cincinnati Stroke Triage Assessment Tool. *Prehosp Emerg Care*. 2017:1–8.
- 341. Sauser K, Levine DA, Nickles AV, Reeves MJ. Hospital variation in thrombolysis times among patients with acute ischemic stroke: the contributions of door-to-imaging time and imaging-to-needle time. *JAMA Neurol.* 2014;71:1155–1161. doi: 10.1001/jamaneurol.2014.1528.
- 342. van Wijngaarden JD, Dirks M, Niessen LW, Huijsman R, Dippel DW. Do centres with well-developed protocols, training and infrastructure have higher rates of thrombolysis for acute ischaemic stroke? *QJM*. 2011;104:785–791. doi: 10.1093/qjmed/hcr075.
- 343. Jeng JS, Tang SC, Deng IC, Tsai LK, Yeh SJ, Yip PK. Stroke center characteristics which influence the administration of thrombolytic therapy for acute ischemic stroke: a national survey of stroke centers in Taiwan. *J Neurol Sci.* 2009;281:24–27. doi: 10.1016/j.jns.2009.03.004.
- 344. Douglas VC, Tong DC, Gillum LA, Zhao S, Brass LM, Dostal J, Johnston SC. Do the Brain Attack Coalition's criteria for stroke centers improve care for ischemic stroke? *Neurology*. 2005;64:422–427. doi: 10.1212/01. WNL.0000150903.38639.E1.
- Asimos AW, Norton HJ, Price MF, Cheek WM. Therapeutic yield and outcomes of a community teaching hospital code stroke protocol. *Acad Emerg Med.* 2004;11:361–370.
- 346. Demaerschalk BM, Bobrow BJ, Raman R, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Ward MP, Richemont PC, Brazdys K, Koch TC, Miley ML, Hoffman Snyder CR, Corday DA, Meyer BC; for the STRokE DOC AZ TIME Investigators. Stroke team remote evaluation using a digital observation camera in Arizona: the initial Mayo Clinic Experience Trial. Stroke. 2010;41:1251–1258. doi: 10.1161/STROKEAHA.109.574509.
- 347. Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD. Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. *Lancet Neurol*. 2008;7:787–795. doi: 10.1016/S1474-4422(08)70171-6.
- 348. Rai AT, Smith MS, Boo S, Tarabishy AR, Hobbs GR, Carpenter JS. The 'pit-crew' model for improving door-to-needle times in endovascular stroke therapy: a Six-Sigma project. *J Neurointerv Surg.* 2016;8:447–452. doi: 10.1136/neurintsurg-2015-012219.
- 349. Wardlaw JM, Carpenter T, Sakka E, Mair G, Cohen G, Shuler K, Palmer JM, Innes K, Sandercock PA. Imaging perfusion deficits, arterial patency and thrombolysis safety and efficacy in acute ischaemic stroke: an

observational study of the effect of advanced imaging methods in the Third International Stroke Trial (IST-3), a randomised controlled trial. *Efficacy Mech Eval.* 2014;1(3). doi: 10.3310/eme.01030.

- 350. Mocco J, Zaidat OO, von Kummer R, Yoo AJ, Gupta R, Lopes D, Frei D, Shownkeen H, Budzik R, Ajani ZA, Grossman A, Altschul D, McDougall C, Blake L, Fitzsimmons BF, Yavagal D, Terry J, Farkas J, Lee SK, Baxter B, Wiesmann M, Knauth M, Heck D, Hussain S, Chiu D, Alexander MJ, Malisch T, Kirmani J, Miskolczi L, Khatri P; THERAPY Trial Investigators. Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone. Stroke. 2016;47:2331–2338. doi: 10.1161/STROKEAHA.116.013372.
- 351. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, Jauch EC, Jovin TG, Yan B, Silver FL, von Kummer R, Molina CA, Demaerschalk BM, Budzik R, Clark WM, Zaidat OO, Malisch TW, Goyal M, Schonewille WJ, Mazighi M, Engelter ST, Anderson C, Spilker J, Carrozzella J, Ryckborst KJ, Janis LS, Martin RH, Foster LD, Tomsick TA; Interventional Management of Stroke (IMS) III Investigators. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368:893–903. doi: 10.1056/NEJMoa1214300.
- Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, Boccardi E; SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368:904–913. doi: 10.1056/NEJMoa1213701.
- 353. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, Feng L, Meyer BC, Olson S, Schwamm LH, Yoo AJ, Marshall RS, Meyers PM, Yavagal DR, Wintermark M, Guzy J, Starkman S, Saver JL; MR RESCUE Investigators. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914–923. doi: 10.1056/NEJMoa1212793.
- 354. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS, Smith WS; TREVO 2 Trialists. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. *Lancet*. 2012;380:1231–1240. doi: 10.1016/S0140-6736(12)61299-9.
- 355. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO; SWIFT Trialists. Solitaire Flow Restoration Device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. *Lancet*. 2012;380:1241–1249. doi: 10.1016/S0140-6736(12)61384-1.
- 356. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, Miyamoto S, Sasaki M, Inoue T; for the MELT Japan Study Group. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. Stroke. 2007;38:2633–2639. doi: 10.1161/STROKEAHA.107.488551.
- 357. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial: Prolyse in Acute Cerebral Thromboembolism. *JAMA*. 1999;282:2003–2011.
- 358. Ali K, Warusevitane A, Lally F, Sim J, Sills S, Pountain S, Nevatte T, Allen M, Roffe C. The Stroke Oxygen Pilot Study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke: effect on key outcomes at six months. *PLoS One*. 2014;8:e59274. doi: 10.1371/journal.pone.0059274.
- 359. Singhal A, Partners SPOTRIAS Investigators. A phase IIB clinical trial of normobaric oxygen therapy (NBO) in acute ischemic stroke (AIS). *Neurology*. 2013;80(suppl):S02.001.
- 360. Roffe C, Ali K, Warusevitane A, Sills S, Pountain S, Allen M, Hodsoll J, Lally F, Jones P, Crome P. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke: effect on recovery of neurological function at one week. *PLoS One*. 2011;6:e19113. doi: 10.1371/journal.pone.0019113.
- 361. Roffe C, Sills S, Pountain SJ, Allen M. A randomized controlled trial of the effect of fixed-dose routine nocturnal oxygen supplementation on oxygen saturation in patients with acute stroke. *J Stroke Cerebrovasc Dis.* 2010;19:29–35. doi: 10.1016/j.jstrokecerebrovasdis.2009.02.008.
- 362. Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, Buonanno FS, Gonzalez RG, Sorensen AG. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005;36:797–802. doi: 10.1161/01.STR.0000158914.66827.2e.
- Rønning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. Stroke. 1999;30:2033–2037.

- 364. Adelman EE, Scott PA, Skolarus LE, Fox AK, Frederiksen SM, Meurer WJ. Protocol deviations before and after treatment with intravenous tissue plasminogen activator in community hospitals. *J Stroke Cerebrovasc Dis.* 2016;25:67–73. doi: 10.1016/j.jstrokecerebrovasdis.2015.08.036.
- 365. Kodankandath TV, Shaji J, Kohn N, Arora R, Salamon E, Libman RB, Katz JM. Poor hypertension control and longer transport times are associated with worse outcome in drip-and-ship stroke patients. J Stroke Cerebrovasc Dis. 2016;25:1887–1890. doi: 10.1016/j.jstrokecerebrovasdis.2016.04.013.
- 366. Lyerly MJ, Albright KC, Boehme AK, Bavarsad Shahripour R, Houston JT, Rawal PV, Kapoor N, Alvi M, Sisson A, Alexandrov AW, Alexandrov AV. Safety of protocol violations in acute stroke tPA administration. J Stroke Cerebrovasc Dis. 2014;23:855–860. doi: 10.1016/j.jstrokecerebrovasdis.2013.07.019.
- Kellert L, Rocco A, Sykora M, Hacke W, Ringleb PA. Frequency of increased blood pressure levels during systemic thrombolysis and risk of intracerebral hemorrhage. Stroke. 2011;42:1702–1706. doi: 10.1161/ STROKEAHA.110.604744.
- Karaszewski B, Thomas RG, Dennis MS, Wardlaw JM. Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome. *BMC Neurol*. 2012;12:123. doi: 10.1186/1471-2377-12-123.
- 369. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW. An early rise in body temperature is related to unfavorable outcome after stroke: data from the PAIS study. J Neurol. 2011;258:302–307. doi: 10.1007/s00415-010-5756-4.
- 370. Broessner G, Beer R, Lackner P, Helbok R, Fischer M, Pfausler B, Rhorer J, Küppers-Tiedt L, Schneider D, Schmutzhard E. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease: bicenter prospective, randomized trial. Stroke. 2009;40:e657–e665. doi: 10.1161/STROKEAHA.109.557652.
- 371. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW; PAIS Investigators. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial. *Lancet Neurol*. 2009;8:434–440. doi: 10.1016/S1474-4422(09)70051-1.
- 372. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, Belagaje SR, Thomas TT, Anderson AM, Frankel MR, Schindler KM, Gupta R. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J Neurointerv Surg. 2014;6:91–95. doi: 10.1136/neurintsurg-2013-010656.
- 373. Su Y, Fan L, Zhang Y, Zhang Y, Ye H, Gao D, Chen W, Liu G. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction. *Stroke*. 2016;47:457–463. doi: 10.1161/STROKEAHA.115.009789.
- 374. Hong JM, Lee JS, Song HJ, Jeong HS, Jung HS, Choi HA, Lee K. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke. Stroke. 2014;45:134–140. doi: 10.1161/STROKEAHA. 113.003143.
- 375. Ovesen C, Brizzi M, Pott FC, Thorsen-Meyer HC, Karlsson T, Ersson A, Christensen H, Norrlin A, Meden P, Krieger DW, Petersson J. Feasibility of endovascular and surface cooling strategies in acute stroke. *Acta Neurol Scand*. 2013;127:399–405. doi: 10.1111/ane.12059.
- 376. Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study: Thromblytic Therapy in Acute Ischemic Stroke Study Investigators. Stroke. 2000;31:811–816.
- 377. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS study: a randomized controlled trial: Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. *JAMA*. 1999;282: 2019–2026.
- 378. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II): Second European-Australasian Acute Stroke Study Investigators. *Lancet*. 1998;352:1245–1251.
- 379. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017–1025.
- Mori E, Minematsu K, Nakagawara J, Hasegawa Y, Nagahiro S, Okada Y, Truelsen T, Lindsten A, Ogawa A, Yamaguchi T; on behalf of the DIAS-J

- Investigators. Safety and tolerability of desmoteplase within 3 to 9 hours after symptoms onset in Japanese patients with ischemic stroke. *Stroke*. 2015;46:2549–2554. doi: 10.1161/STROKEAHA.115.009917.
- 381. Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Davalos A, Bonafe A, Jahan R, Fischer U, Gralla J, Saver JL, Pereira VM. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemic stroke: a pooled analysis of the SWIFT and STAR Studies. *JAMA Neurol*. 2017;74:268–274. doi: 10.1001/jamaneurol.2016.5374.
- 382. Grech R, Pullicino R, Thornton J, Downer J. An efficacy and safety comparison between different stentriever designs in acute ischaemic stroke: a systematic review and meta-analysis. *Clin Radiol*. 2016;71:48–57. doi: 10.1016/j.crad.2015.09.011.
- 383. Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. BMJ. 2016;353:i1754.
- 384. Touma L, Filion KB, Sterling LH, Atallah R, Windle SB, Eisenberg MJ. Stent retrievers for the treatment of acute ischemic stroke: a systematic review and meta-analysis of randomized clinical trials. *JAMA Neurol*. 2016;73:275–281. doi: 10.1001/jamaneurol.2015.4441.
- 385. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, Alshahrani M, Murty NK, Alhazzani A, Yarascavitch B, Reddy K, Zaidat OO, Almenawer SA. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. *JAMA*. 2015;314:1832–1843. doi: 10.1001/jama.2015.13767.
- Chen CJ, Ding D, Starke RM, Mehndiratta P, Crowley RW, Liu KC, Southerland AM, Worrall BB. Endovascular vs medical management of acute ischemic stroke. *Neurology*. 2015;85:1980–1990. doi: 10.1212/ WNL.0000000000002176.
- Elgendy IY, Kumbhani DJ, Mahmoud A, Bhatt DL, Bavry AA. Mechanical thrombectomy for acute ischemic stroke: a meta-analysis of randomized trials. *J Am Coll Cardiol*. 2015;66:2498–2505. doi: 10.1016/j.jacc.2015.09.070.
- 388. Fargen KM, Neal D, Fiorella DJ, Turk AS, Froehler M, Mocco J. A meta-analysis of prospective randomized controlled trials evaluating endovascular therapies for acute ischemic stroke. *J Neurointerv Surg*. 2015;7:84–89. doi: 10.1136/neurintsurg-2014-011543.
- Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis. *J Neurointerv Surg.* 2015;7:868–874. doi: 10.1136/neurintsurg-2014-011418.
- 390. Marmagkiolis K, Hakeem A, Cilingiroglu M, Gundogdu B, Iliescu C, Tsitlakidou D, Katramados A. Safety and efficacy of stent retrievers for the management of acute ischemic stroke: comprehensive review and meta-analysis. *JACC Cardiovasc Interv.* 2015;8:1758–1765. doi: 10.1016/j.jcin.2015.07.021.
- Yarbrough CK, Ong CJ, Beyer AB, Lipsey K, Derdeyn CP. Endovascular thrombectomy for anterior circulation stroke: systematic review and meta-analysis. Stroke. 2015;46:3177–3183. doi: 10.1161/ STROKEAHA.115.009847.
- 392. Almekhlafi MA, Menon BK, Freiheit EA, Demchuk AM, Goyal M. A meta-analysis of observational intra-arterial stroke therapy studies using the Merci device, Penumbra system, and retrievable stents. AJNR Am J Neuroradiol. 2013;34:140–145. doi: 10.3174/ajnr.A3276.
- 393. Fields JD, Khatri P, Nesbit GM, Liu KC, Barnwell SL, Lutsep HL, Clark WM, Lansberg MG. Meta-analysis of randomized intra-arterial thrombolytic trials for the treatment of acute stroke due to middle cerebral artery occlusion. *J Neurointery Surg.* 2011;3:151–155. doi: 10.1136/jnis.2010.002766.
- 394. Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2015;36:525–529. doi: 10.3174/ajnr. A4159.
- 395. Li W, Lin L, Zhang M, Wu Y, Liu C, Li X, Huang S, Liang C, Wang Y, Chen J, Feng W. Safety and preliminary efficacy of early tirofiban treatment after alteplase in acute ischemic stroke patients. Stroke. 2016;47:2649–2651. doi: 10.1161/STROKEAHA.116.014413.
- 396. Wada T, Yasunaga H, Horiguchi H, Fushimi K, Matsubara T, Nakajima S, Yahagi N. Ozagrel for patients with noncardioembolic ischemic stroke: a propensity score-matched analysis. *J Stroke Cerebrovasc Dis*. 2016;25:2828–2837. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.044.
- Sandercock PA, Counsell C, Kamal AK. Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev. 2008:CD000024.
- 398. Wang Q, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin and early neurologic deterioration

- in acute stroke caused by large artery occlusive disease. *Arch Neurol*. 2012;69:1454–1460. doi: 10.1001/archneurol.2012.1633.
- 399. Wang QS, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin versus aspirin for acute ischemic stroke with large artery occlusive disease: subgroup analyses from the Fraxiparin in Stroke Study for the treatment of ischemic stroke (FISS-tris) study. Stroke. 2012;43:346–349. doi: 10.1161/STROKEAHA.111.628347.
- 400. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, Conwit R, Liebeskind DS, Sung G, Kramer I, Moreau G, Goldweber R, Sanossian N; FAST-MAG Investigators and Coordinators. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015;372:528–536. doi: 10.1056/NEJMoa1408827.
- 401. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A, Richieri SP, Dilly SG, Zivin J, Lees KR; for the NEST 3 Committees and Investigators. Transcranial laser therapy in acute stroke treatment: results of Neurothera Effectiveness and Safety Trial 3, a phase III clinical end point device trial. *Stroke*. 2014;45:3187–3193. doi: 10.1161/STROKEAHA.114.005795.
- Seedat J, Penn C. Implementing oral care to reduce aspiration pneumonia amongst patients with dysphagia in a South African setting. S Afr J Commun Disord. 2016:63.
- 403. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G; CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. *Lancet*. 2013;382:516–524. doi: 10.1016/S0140-6736(13)61050-8.
- 404. Geeganage CM, Sprigg N, Bath MW, Bath PM. Balance of symptomatic pulmonary embolism and symptomatic intracerebral hemorrhage with low-dose anticoagulation in recent ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. *J Stroke Cerebrovasc Dis.* 2013;22:1018–1027. doi: 10.1016/j. jstrokecerebrovasdis.2012.03.005.
- 405. Qaseem A, Chou R, Humphrey LL, Starkey M, Shekelle P; Clinical Guidelines Committee of the American College of Physicians. Venous thromboembolism prophylaxis in hospitalized patients: a clinical practice guideline from the American College of Physicians. *Ann Intern Med.* 2011;155:625–632. doi: 10.7326/0003-4819-155-9-201111010-00011.
- 406. Herisson F, Godard S, Volteau C, Le Blanc E, Guillon B, Gaudron M; SEVEL Study Group. Early Sitting in Ischemic Stroke Patients (SEVEL): a randomized controlled trial. *PLoS One*. 2016;11:e0149466. doi: 10.1371/journal.pone.0149466.
- 407. Morreale M, Marchione P, Pili A, Lauta A, Castiglia SF, Spallone A, Pierelli F, Giacomini P. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? Eur J Phys Rehabil Med. 2016;52:81–89.
- 408. Johansson E, Cuadrado-Godia E, Hayden D, Bjellerup J, Ois A, Roquer J, Wester P, Kelly PJ. Recurrent stroke in symptomatic carotid stenosis awaiting revascularization: a pooled analysis. *Neurology*. 2016;86:498–504. doi: 10.1212/WNL.0000000000002354.
- 409. Bazan HA, Zea N, Jennings B, Smith TA, Vidal G, Sternbergh WC 3rd. Urgent carotid intervention is safe after thrombolysis for minor to moderate acute ischemic stroke. *J Vasc Surg.* 2015;62:1529–1538. doi: 10.1016/j.jvs.2015.07.082.
- 410. Chisci E, Pigozzi C, Troisi N, Tramacere L, Zaccara G, Cincotta M, Ercolini L, Michelagnoli S. Thirty-day neurologic improvement associated with early versus delayed carotid endarterectomy in symptomatic patients. *Ann Vasc Surg.* 2015;29:435–442. doi: 10.1016/j. avsg.2014.08.028.
- 411. Devlin TG, Phade SV, Hutson RK, Fugate MW, Major GR 2nd, Albers GW, Sirelkhatim AA, Sapkota BL, Quartfordt SD, Baxter BW. Computed tomography perfusion imaging in the selection of acute stroke patients to undergo emergent carotid endarterectomy. *Ann Vasc Surg.* 2015;29:125. e1–125.11. doi: 10.1016/j.avsg.2014.07.023.
- 412. Steglich-Arnholm H, Holtmannspötter M, Kondziella D, Wagner A, Stavngaard T, Cronqvist ME, Hansen K, Højgaard J, Taudorf S, Krieger DW. Thrombectomy assisted by carotid stenting in acute ischemic stroke management: benefits and harms. *J Neurol*. 2015;262:2668–2675. doi: 10.1007/s00415-015-7895-0.
- 413. Ferrero E, Ferri M, Viazzo A, Labate C, Berardi G, Pecchio A, Piazza S, Ripepi M, Nessi F. A retrospective study on early carotid endarterectomy within 48 hours after transient ischemic attack and stroke in evolution. *Ann Vasc Surg.* 2014;28:227–238. doi: 10.1016/j. avsg.2013.02.015.

414. Limone BL, Baker WL, Mearns ES, White CM, Kluger J, Coleman CI. Common flaws exist in published cost-effectiveness models of phar-macologic stroke prevention in atrial fibrillation. *J Clin Epidemiol*. 2014;67:1093–1102. doi: 10.1016/j.jclinepi.2014.05.013.

- 415. Shariat A, Yaghoubi E, Farazdaghi M, Aghasadeghi K, Borhani Haghighi A. Comparison of medical treatments in cryptogenic stroke patients with patent foramen ovale: a randomized clinical trial. *J Res Med Sci.* 2013;18:94–98.
- 416. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP; for the PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study. Circulation. 2002;105:2625–2631.
- 417. Kim JT, Park MS, Choi KH, Cho KH, Kim BJ, Han MK, Park TH, Park SS, Lee KB, Lee BC, Yu KH, Oh MS, Cha JK, Kim DH, Nah HW, Lee J, Lee SJ, Ko YC, Kim JG, Park JM, Kang K, Cho YJ, Hong KS, Choi JC, Kim DE, Ryu WS, Shin DI, Yeo MJ, Kim WJ, Lee J, Lee JS, Saver JL, Bae HJ. Different antiplatelet strategies in patients with new ischemic stroke while taking aspirin. Stroke. 2016;47:128–134. doi: 10.1161/STROKEAHA.115.011595.
- 418. Lee M, Wu YL, Saver JL, Lee HC, Lee JD, Chang KC, Wu CY, Lee TH, Wang HH, Rao NM, Ovbiagele B. Is clopidogrel better than aspirin following breakthrough strokes while on aspirin? A retrospective cohort study. *BMJ Open.* 2014;4:e006672. doi: 10.1136/bmjopen-2014-006672.
- 419. Abdul-Rahim AH, Fulton RL, Frank B, Tatlisumak T, Paciaroni M, Caso V, Diener HC, Lees KR; VISTA Collaborators. Association of improved outcome in acute ischaemic stroke patients with atrial fibrillation who receive early antithrombotic therapy: analysis from VISTA. *Eur J Neurol*. 2015;22:1048–1055. doi: 10.1111/ene.12577.
- 420. Jensen J, Salottolo K, Frei D, Loy D, McCarthy K, Wagner J, Whaley M, Bellon R, Bar-Or D. Comprehensive analysis of intra-arterial treatment for acute ischemic stroke due to cervical artery dissection. *J Neurointerv* Surg. 2017;9:654–658. doi: 10.1136/neurintsurg-2016-012421.
- 421. Aronow HD, Novaro GM, Lauer MS, Brennan DM, Lincoff AM, Topol EJ, Kereiakes DJ, Nissen SE. In-hospital initiation of lipid-lowering therapy after coronary intervention as a predictor of long-term utilization: a propensity analysis. *Arch Intern Med.* 2003;163:2576–2582. doi: 10.1001/archinte.163.21.2576.

2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

William J. Powers, Alejandro A. Rabinstein, Teri Ackerson, Opeolu M. Adeoye, Nicholas C. Bambakidis, Kyra Becker, José Biller, Michael Brown, Bart M. Demaerschalk, Brian Hoh, Edward C. Jauch, Chelsea S. Kidwell, Thabele M. Leslie-Mazwi, Bruce Ovbiagele, Phillip A. Scott, Kevin N. Sheth, Andrew M. Southerland, Deborah V. Summers, David L. Tirschwell and on behalf of the American Heart Association Stroke Council

Stroke. published online January 24, 2018;

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2018 American Heart Association, Inc. All rights reserved.

Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://stroke.ahajournals.org/content/early/2018/01/23/STR.000000000000158

Data Supplement (unedited) at:

http://stroke.ahajournals.org/content/suppl/2018/01/23/STR.000000000000158.DC1 http://stroke.ahajournals.org/content/suppl/2018/01/23/STR.000000000000158.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at: http://stroke.ahajournals.org//subscriptions/

2018 AIS GL Data Supplement 1

Table of Contents

Table I. Nonrandomized Studies of Stroke Awareness and Emergency Medical Services Use	4
Table II. Randomized Clinical Trials for Improving Stroke Awareness	6
Table III. Nonrandomized Trials, Observational Studies, and/or Registries of Prediction Value of National Institutes of Health Stroke Scale	7
Table IV. Nonrandomized Studies of Emergency Medical Services Use of Prehospital Stroke Severity Scales	10
Table V. Nonrandomized Studies of Stroke Systems of Care	1
Table VI. Nonrandomized Studies of Hospital Stroke Capabilities	1
Table VII. Nonrandomized Studies of Hospitals Achieving Rapid Door-to-Needle Times for IV Alteplase in Stroke	1
Table VIII. Randomized Clinical Trials Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use	
Table IX. Nonrandomized Studies Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use	
Table X. Randomized Clinical Trials of Level of Agreement Between Central Read and Spoke Radiologists and Hub Neurologists in Interpreting Head Computed	
Tomography Scans of Stroke Patients Presenting to Telestroke Hospitals.	19
Table XI. Randomized Clinical Trials Comparing Synchronous Audio Video Telemedicine to Telephone-Only for Acute Ischemic Stroke	2
Table XII. Nonrandomized Trials, Observational Studies, and/or Registries of Telestroke for Triaging Patients for Endovascular Therapy	2
Table XIII. Nonrandomized Trails, Observational Studies, and/or Registries of Alteplase Decision-Making via Telephone Consultation	
Table XIV. Nonrandomized Studies Assessing the Impact of Stroke System Quality Improvement Processes	
Table XV. Nonrandomized Trials, Observational Studies, and/or Registries of Computed Tomography and Magnetic Resonance Imaging for Routine Stroke Care	2
Table XVI. Observational Studies of 2016 Door-to-Computed Tomography Times	2
Table XVII. Randomized Clinical Trials of Interaction of Baseline Imaging Computed Tomography Hypodensity with Treatment Effect for Intravenous Alteplase	3
Table XVIII. Randomized Clinical Trials of Interaction of Baseline Computed Tomography Hyperdense Middle Cerebral Artery Sign with Treatment Effect for	
Intravenous Alteplase	3
Table XIX. Observational Studies of Interaction of Baseline Magnetic Resonance Imaging of Cerebral Microbleeds with Symptomatic Intracerebral Hemorrhage After	
Intravenous Alteplase	3
Table XX. Randomized Clinical Trials of Intravenous Thrombolytics Employing Multimodal Imaging	3
Table XXI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Thrombolytics Employing Multimodal Imaging	3
Table XXII. Nonrandomized Trials, Observational Studies, and/or Registries of Creatinine Testing Prior to Contrast Computed Tomography	39
Table XXIII. Randomized Clinical Trials Comparing Endovascular Therapy	4
Table XXIV. Nonrandomized Trials, Observational Studies, and/or Registries of Collateral Status	5
Table XXV. Nonrandomized Trials, Observational Studies, and/or Registries of Chest Radiography in Patients with Acute Ischemic Stroke	5
Table XXVI. Randomized Clinical Trials Comparing Supplemental Oxygen	5
Table XXVII. Nonrandomized Trials, Observational Studies, and/or Registries of Hyperbaric Oxygen	5
Table XXVIII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypotension and Hypovolemia	5
Table XXIX. Nonrandomized Trials, Observational Studies, and/or Registries of Blood Pressure and Thrombolysis	6
Table XXX. Nonrandomized Studies of Hyperthermia After Acute Ischemic Stroke	6
Table XXXI. Randomized Clinical Trials of Normothermia	6
Table XXXII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypothermia	6
Table XXXIII. Randomized Clinical Trials of Hypothermia	60

Table XXXIV. Randomized Clinical Trials Evaluating Intravenous Alteplase for Treatment of Acute Ischemic Stroke	70
Table XXXV. Randomized Clinical Trials of Intravenous Alteplase for Mild Stroke 3–4.5 Hours	74
Table XXXVI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Alteplase 3–4.5 Hours for Mild Stroke	75
Table XXXVII. Nonrandomized trials, Observational Studies, and/or Registries of Sickle Cell Disease and IV Alteplase	76
Table XXXVIII. Nonrandomized Trials, Observational Studies of Antithrombotic Agents Given Within 24 Hours After Intravenous Alteplase for the Treatment of	
Acute Ischemic Stroke	
Table XXXIX. Randomized Clinical Trials Evaluating Intravenous Fibrinolytics Other Than Alteplase for Treatment of Acute Ischemic Stroke	77
Table XL. Randomized Clinical Trials of Adjuvant Sonothrombolysis (since 2013 AIS Guidelines)	
Table XLI. Nonrandomized Trials, Observational Studies, and/or Registries of Endovascular Therapy	
Table XLII. Randomized Trials Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy	
Table XLIII. Nonrandomized Trials, Observational Studies, and/or Registries Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy	95
Table XLIV. Nonrandomized Studies of Antiplatelet Therapy in Patients with Acute Ischemic Stroke	
Table XLV. Randomized Clinical Trials Comparing Antiplatelet to Control	
Table XLVI. Randomized Clinical Trials Comparing Anticoagulant to Control	
Table XLVII. Nonrandomized Studies of Anticoagulation in Patients with Acute Ischemic Stroke	
Table XLVIII. Randomized Clinical Trials Comparing Other Treatments for Acute Ischemic Stroke	
Table XLIX. Randomized Clinical Trials Comparing Transcranial Laser Therapy for Stroke	110
Table L. Randomized Clinical Trials Comparing Early Versus Delayed Initiation of Treatment for Blood Pressure Reduction in Patients with Acute Ischemic Stroke	110
Table LI. Randomized Clinical Trials of Dysphagia Screening	119
Table LII. Nonrandomized Trials, Observational Studies, and/or Registries of Dysphagia Screening	
Table LIII. Randomized Clinical Trials of Nutrition	
Table LIV. Nonrandomized Trials, Observational Studies, and/or Registries of Oral Hygiene	124
Table LV. Randomized Clinical Trials of Oral Care	127
Table LVI. Randomized Clinical Trials Comparing Deep Vein Thrombosis Prophylaxis	
Table LVII. Nonrandomized Studies of Depression Screening in Patients with Acute Ischemic Stroke	135
	136
Table LIX. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke	
Table LX. Randomized Clinical Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction	142
Table LXI. Nonrandomized Trials, Observational Studies, and/or Registries of Acute Multiple Infarcts in Multiple Cerebrovascular Circulations and Stroke Etiologic	
Classification	
Table LXII. Nonrandomized Trials, Observational Studies, and/or Registries of Acute Infarct Topography and Detection of Atrial Fibrillation by Long Term Monitoring	
Table LXIII. Nonrandomized Trials, Observational Studies, and/or Registries of Early Carotid Revascularization	
Table LXIV. Nonrandomized Trials, Observational Studies, and/or Registries of Intracranial Atherosclerotic Stenosis	
Table LXV. Randomized Clinical Trials of Intracranial Atherosclerotic Stenosis.	
Table LXVI. Selected Nonrandomized Trials, Observational Studies, and/or Registries Relevant to Cardiac Monitoring for Atrial Fibrillation and Stroke Prevention	
Table LXVII. Randomized Clinical Trials of Prolonged Cardiac Monitoring after Stroke with Clinical End Points.	
Table LXVIII. Randomized Clinical Trials of Secondary Stroke Prevention in Patients with Atrial Fibrillation	
Table LXIX. Nonrandomized Trials, Observational Studies, and/or Registries of Cost-effectiveness of Echocardiography	
Table LXX. Randomized Clinical Trials of Secondary Stroke Prevention in Patients with Patent Foramen Ovale	
Table LXXI. Nonrandomized Trials, Observational Studies, and/or Registries of Cholesterol Guidelines	180

Table LXXII. Randomized Clinical Trials of Evolocumab	181
Table LXXIII. Randomized Clinical Trials Comparing Continuous Positive Airway Pressure Versus Control	183
Table LXXIV. Randomized Clinical Trials of Recurrent Stroke on Aspirin	
Table LXXV. Nonrandomized Studies of Recurrent Stroke on Aspirin	186
Table LXXVI. Subgroup Analyses of Randomized Clinical Trials of Antiplatelet Versus Anticoagulation in Patients with Non-cardioembolic Acute Ischemic Stroke	
Taking Antiplatelets at Time of Qualifying Event	188
Table LXXVII. Studies of Early Secondary Prevention in Patients with Acute Ischemic Stroke	
Table LXXVIII. Randomized Clinical Trials of Early Antiplatelet Versus Anticoagulation in Cervical Artery Dissection	194
Table LXXIX. Randomized Clinical Trials Regarding Early Initiation of Statins in Patients Hospitalized with Acute Ischemic Stroke	195
Table LXXX. Nonrandomized Studies Regarding Early Initiation of Statins in Patients Hospitalized with Acute Atherosclerotic Events	196
Table LXXXI. Randomized Studies Regarding Early Initiation of Smoking Cessation in Patients with Acute Atherosclerotic Events Who Actively Smoke	
Table LXXXII. Nonrandomized Studies Regarding Early Initiation of Smoking Cessation in AIS patients Who Actively Smoke	200
Table LXXXIII. Original Wording of Recommendations Reworded from Previous Guidelines and Statements	
References	

Table I. Nonrandomized Studies of Stroke Awareness and Emergency Medical Services Use

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Ojike N, et al. ¹⁷ 2016 <u>27478680</u>	Study type: Survey Size: N=36,697	Inclusion criteria: National Health Interview Survey Exclusion criteria: N/A	1º end point: Assess stroke knowledge and likelihood of calling 911 Results: • Age-adjusted stroke awareness was 66% • Stroke awareness lowest for Hispanics, Blacks and those residing in the Western United States; least recognized stroke symptom was sudden severe headache	Stroke awareness varied by race/ethnicity, sex and region/location but not by level of education or insurance coverage Stroke awareness lowest for Hispanics, Blacks and those residing in the Western United States.
Schwartz J, et al. ³³⁶ 2016 26953776	Study type: Registry Size: N=184,179	Inclusion criteria: 911 calls for patients ≥18 y with an EMS provider impression of stroke Exclusion criteria: N/A	1° end point: EMS response time Results: • Median EMS response time (911 call to ED arrival) was 36 (IQR, 28.7–48.0) min • On-scene time (15 min) was the largest component of this time • Longer times were noted for patients aged 65–74 y, of white race, females, and non-urban areas	There are opportunities for improvement in EMS stroke recognition and response times
Mochari- Greenberger H, et al. ¹⁹ 2015 26268882	Study type: Observational study Size: N=398,798	Inclusion criteria: Get With the Guidelines Hospitalized Stroke Cases Exclusion criteria: N/A	1° end point: Association of race/ethnicity and EMS use among stroke patients Results: • 59% of all patients used EMS • White women were most likely to use EMS (62%), and Hispanic men least likely (52%)	EMS use differs by race ethnicity and gender
Berglund A, et al. ²¹ 2014 24576912	Study type: Observational study Size: N=900	Inclusion criteria: Dispatch EMS stroke activation Exclusion criteria: N/A	1° end point: PPV for discharge diagnosis of stroke/TIA Results: • PPV for a discharge diagnosis of stroke/TIA was 51% (95% CI, 47–54%) for dispatch and 58% (95% CI, 52-64%) in ambulance • Positive FAST increased PPV to 56% (95% CI: 52–61%) for dispatch and 73% (95% CI, 66–80%) for ambulance	Better stroke identification tools are needed in the prehospital setting

			Positive FAST also found in 44% of non-stroke by dispatch and a negative FAST in up to 17% of true dispatch stroke cases	
De Luca A, et al. ²² 2013	Study type: Cross- sectional observational study	Inclusion criteria: Dispatch EMS stroke activation	1° end point: PPV of EMS dispatchers' ability to recognize stroke/TIA with CPSS	Better stroke identification tools are needed in the prehospital setting
<u>24330761</u>	Size: N=21,760	Exclusion criteria: N/A	Results:	
Ekundayo OJ, et al. ¹⁸ 2013 <u>23633218</u>	Study type: Observational study Size: N=204,591	Inclusion criteria: Get With the Guidelines Hospitalized Stroke Cases Exclusion criteria: N/A	1° end point: EMS use by stroke patients Results: EMS transport was independently associated with: • Earlier arrival (onset-to-door time, ≤3 h; adjusted OR, 2.00; 95% CI,1.93–2.08) • Prompt ER evaluation (more patients with door-to-imaging time, ≤25 min; OR, 1.89; 95% CI, 1.78–2.00) • More rapid treatment (more patients with door-to-needle time, ≤60 min; OR, 1.44; 95% CI, 1.28–1.63) • More patients eligible to be treated with tissue-type plasminogen activator if onset is ≤2 h (67% vs. 44%; OR, 1.47; 95% CI, 1.33–1.64).	Interventions aimed at increased EMS use should target at-risk populations, particularly young and minority race/ethnic populations
Lin CB, et al. ²³ 2012 22787065	Study type: Observational study Size: N=371,988	Inclusion criteria: Get With the Guidelines Hospitalized Stroke Cases Transported by EMS Exclusion criteria: N/A	1° end point: Evaluation and treatment times Results: • Prenotification occurred in 67% of EMS transports • Patients with EMS prenotification were more likely to be treated with alteplase within 3 h (82.8% vs. 79.2%, P<0.0001) • Patients with EMS prenotification had shorter door-to-imaging times (26 min vs. 31 min, P<0.0001), shorter door-to-needle times (78 min vs. 80 min, P<0.0001), and shorter symptom onset-to-needle times (141 min vs. 145 min, P<0.0001)	EMS prenotification is associated with improved and timelier treatment, and initiatives to improve prenotification rates should be implemented

Abbreviations: CI indicates confidence interval; CPSS, Cincinnati Prehospital Stroke Scale; EMS, emergency medical services; FAST, Face, Arm, Speech, Time test; h, hour; min, minute; N/A, not available; OR, odds ratio; PPV, positive predictive value; and TIA, transient ischemic attack.

Literature search topic: Public education, EMS assessment and management: recognize stroke, call 911.

Table II. Randomized Clinical Trials for Improving Stroke Awareness

Table II. Randomized Clinical Trials for Improving Stroke Awareness										
Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments			
SWIFT Boden-Albala B, et al. ²⁰ 2015 26069259	Aim: "Determine whether a culturally tailored, interactive educational program in a racially and ethnically diverse high risk population, aimed at stroke awareness and emergency treatment will lead to increased stroke knowledge, behavioral change and improved time to arrival to the ED upon onset of stroke symptoms." Study type: Single-center RCT Size: N=1193	Inclusion criteria: Ischemic stroke or TIA, patients >18 y and living in a household with a telephone Exclusion criteria: Unable to give informed consent; discharged to long term nursing home, or requiring 24-h care; mRS >4 at baseline; severe aphasia limiting comprehension; pre-stroke dementia history, or end stage disease resulting in probable mortality ≤1 y	Intervention: Two interactive multimedia educational group sessions (N=601) Comparator: Standard stroke care and treatment, as well as the distribution of stroke pamphlets in English and Spanish designed by the American Heart Association (N=592)	1° end point: Recurrent event rates, early arrival at recurrent event, and stroke knowledge: • At baseline, 28% arrived at the ED within 3 h • Over 5 y, 224 (19%) participants experienced a recurrent event • 40% of the interactive intervention group vs. 46% of the enhanced education group arrived within 3 h (<i>P</i> =0.33) • The interactive intervention group had greater stroke knowledge at 1 mo (OR, 1.63; 95% CI, 1.23–2.15) Safety end point: N/A	N/A	Underpowered to detect impact of intervention on earlier arrival times and education provided to both groups may have enhanced knowledge in the "non-intervention" group	A multi-media approach to stroke education and awareness is feasible. More work is needed to impact subsequent behavior to improve early arrival after stroke onset.			
KIDS Morgenstern LB, et al. ³³⁷ 2007 <u>17885255</u>	Aim: "Increase the correct identification of stroke signs and symptoms and encourage immediate contact with emergency medical	Inclusion criteria: CCISD 6th graders Exclusion criteria: Non-6th	Intervention: 12 h of classroom instruction in 6th, 7th, and 8th graders; parents were educated	1° end point: Pre- and post-test on stroke knowledge: • Knowledge of stroke pathophysiology improved	N/A	High loss to follow-up Parents not directly educated	An educational intervention may improve stroke knowledge in children. A multipronged			

services (calling 911) when these signs and symptoms were detected" Study type: RCT Size: N=573 kids, N=462 parents	grader, non CCISD student	through homework assignments (N=294 kids, N=256 parents) Comparator: Schools that did not receive the intervention (N=279 kids, N=206 parents)	in intervention students from 29% to 34% correct, whereas control students changed from 28% correct to 25% • Stroke symptom knowledge improved from 28% correct to 43% in intervention students, and 25% correct to 29% in control • For a witnessed stroke, intervention students improved their correct answers from 36% to 54% whereas control changed from 32% correct to 34% • Parental response rate was not testable due to poor response rate		approach with education dedicated to parents/adults is warranted to improve overall societal stroke knowledge
			Safety end point: N/A		

Abbreviations: CCISD indicates Corpus Christi Independent School District; ED, emergency department; h, hour; mRS, modified Rankin Scale; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk; TIA, transient ischemic attack, and y, years. **Literature search topic**: Public education, EMS assessment and management: recognize stroke, call 911.

Table III. Nonrandomized Trials, Observational Studies, and/or Registries of Prediction Value of National Institutes of Health Stroke Scale

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Fonarow GC, et al. ⁶⁵ 2012 23130117	Study type: Retrospective cohort (GWTG-Stroke Registry) Size: N=33102 AIS patients	Inclusion criteria: GWTG-Stroke Registry inclusion and Medicare Part A claim data with AIS at centers w ≥25 AIS between 2003–07	1° end point: All-cause mortality within 30 d Results: • There was a strong graded relation between increasing NIHSS score and higher 30-d mortality • The 30-d mortality rates for acute ischemic stroke by NIHSS categories were as follows: 0–7, 4.2%; 8–13, 13.9%; 14–21, 31.6%; 22–42, 53.5%	The NIHSS provides substantial prognostic information regarding mortality within the first 30 d among Medicare beneficiaries with AIS

		with NIHSS documented Exclusion criteria: N/A	A model with NIHSS alone provided excellent discrimination whether included as a continuous variable (c-statistic 0.82; 0.81 to 0.83), 4 categories (c-statistic 0.80; 0.79–0.80), or 3 categories (c-statistic 0.79; 0.78–0.79)	
Lyden P, et al. ⁶⁴ 2009 19520998	Study type: Observational Size: 8214 NIHSS score ratings	Inclusion criteria: Convenience sample Exclusion criteria: N/A	End Points: Rater agreement on NIHSS score assessed using unweighted kappa statistic for multiple raters and intraclass correlation coefficient Results: Individual NIHSS test item scoring agreement ranged from 0.15 (ataxia) to 0.81 (LOC item 1c) with agreement being similar across all subgroups and venues of raters. Overall total NIHSS score intra-class correlation coefficient across all subgroups and venues was 0.85 (95% CI, 0.72–0.90) with no clinically meaningful differences between rater specialty and setting	NIHSS training and certification using DVD is valid and reliable among general users with remarkable consistency across different venues Reliability assessments of novice users were similar to what was found using experienced stroke centers No differences in the ICC of the total NIHSS were identified when used by neurologists, emergency physicians, or nurses Agreement across various settings was similar and generally moderate to excellent
SITS-MOST Wahlgren N, et al. ⁶¹ 2008 18927461	Study type: Post hoc subgroup analysis of a prospective, open, monitored, observational study Size: N=6483	Inclusion criteria: See SITS-MOST Exclusion criteria: Same	1° end point: Symptomatic intracerebral hemorrhage, mortality and independency (mRS 0–2 at 3 mo post-stroke) Results: In the multivariable analysis, older age, high blood glucose, high NIHSS score and current infarction on imaging scans were related to poor outcome in all parameters	Stroke severity at baseline as measured by NIHSS score and functional disability before current stroke appeared to be strongest predictors for mortality and rate of independence at 3 mo The association between NIHSS scores and symptomatic ICH (SITS-MOST definition) was not linear
Josephson SA, et al. ⁶³ 2006 16888381	Study type: Retrospective observational Size: N=7405 unique raters	Inclusion criteria: Convenience sample Exclusion criteria: N/A	End Points: Rater agreement on overall NIHSS score; determination of passing scores on examination; individual questions assessed using unweighted and modified kappa statistics Results: • Greater mean NIHSS scores were associated with greater scoring variance • Nurses (RNs) demonstrated less variance from the most common response compared to other professions (P<0.0001)	Substantial variability was found in total NIHSS score for the videotape vignettes; the author suggests this was due to problems with the test itself, rather than poorly performing raters High agreement was found on many items in the NIHSS

			Observed agreement on individual NIHSS elements ranged from 0.697 (aphasia) to 0.995 (LOC item 1c) Modified kappa ranged from 0.596 (aphasia) to 0.993 (LOC 1c)	
NINDS t-PA Stroke Study Frankel MR, et	Study type: Post hoc subgroup analysis of the placebo group of	Inclusion criteria: See NINDS t-PA Stroke Study	1° end point: Outcome was measured with four stroke rating scales administered 3 mo after treatment	Baseline NIHSS strongly predicts long-term outcome in stroke patients
al. ⁶⁰ 2000 <u>11061250</u>	a randomized, double-blind, placebo controlled trial	Exclusion criteria: Same	Results: Baseline variables that predicted a poor outcome were NIHSS score >17 plus atrial fibrillation, yielding a PPV for poor outcome of 96% (95% CI, 88–100); at 24 h the best predictor was an NIHSS score >22 (PPV 98%; 95% CI, 93–	
	Size: N=312		100), and at 7–10 d the best predictor was NIHSS >16 (PPV 92%; 95% CI, 85–99)	
Adams HP Jr, et al. ⁵⁹ 1999	Study type: Post hoc subgroup analysis of a randomized,	Inclusion criteria: See Trial of ORG 10172 in Acute	1° end point: Outcomes assessed at 7 d and 3 mo using the Barthel Index and Glasgow Outcome Scale	Baseline NIHSS strongly predicts long-term outcome in stroke patients
10408548	double-blind, placebo controlled trial Size: N=1281	Stroke Exclusion criteria: Same	Results: Baseline NIHSS score strongly predicted outcome, with one additional point on the NIHSS decreasing the likelihood of excellent outcome at 3 mo by 17%	
NINDS t-PA Stroke Trial Subgroup	Study type: Post hoc subgroup analysis of a randomized,	Inclusion criteria: See NINDS t-PA Stroke Study	1° end point: Outcome was measured with four stroke rating scales administered 3 mo after treatment	No patient subgroups with differential response to alteplase could be identified
Analysis NINDS t-PA Stroke Study	double-blind, placebo controlled trial	Exclusion criteria: Same	Results: • No pretreatment information significantly affected patients' response to alteplase (all <i>P</i> >0.05)	Older patients with severe deficits (high NIHSS) were less likely to do well in the long term compared to
Group ⁵⁸ 1997 <u>9368551</u>	Size: N=624 subjects		Outcome was related to age-by-deficit severity interaction, diabetes, age-by-blood pressure interaction, and early CT findings	those younger or with less severe deficits; however, these patients still benefited from t-PA treatment

Abbreviations: AlS indicates acute ischemic stroke; CI, confidence interval; GWTG, Get With The Guidelines; ICH, intracerebral hemorrhage; ICC, intraclass correlation coefficient; LOC, level of consciousness; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NINDS, National Institute of Neurological Disorders; PPV, positive predictive value; OR, odds ratio; and RN, registered nurse.

Literature search topic: Emergency evaluation: benefit of stroke scale use

Table IV. Nonrandomized Studies of Emergency Medical Services Use of Prehospital Stroke Severity Scales

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Carrera D, et al. ³³⁸ 2017 27720525	Study type: Reanalysis of observational data Size: N=341	Inclusion criteria: Previously enrolled in original RACE derivation Exclusion criteria: No prehospital RACE score available	1° end point: Receiver operating characteristics of test performance Results: • Seven simpler versions of RACE scale derived • Original RACE scale had an AUC of 0.82 for detecting LVO • The 7 simpler RACE versions generated slightly lower AUC for detecting LVO	 The use of simplified versions of the original RACE scale reduced performance No direct comparison to other scores was feasible, and biases of patient selection in the original cohort persist
Kim JT, et al. ³³⁹ 2017 <u>28087807</u>	Study type: Secondary analysis of prospective data from the FAST-MAG trial Size: N=1632	Inclusion criteria: Confirmed cerebrovascular disease, transported by EMS and enrolled in FAST-MAG Exclusion criteria: Non-FAST-MAG transports	1° end point: Correlation of prehospital LAMS with early ED NIHSS Results: ED LAMS score correlated with concurrently performed NIHSS in all cerebrovascular cases (r=0.89) Prehospital LAMS correlated moderately with ED NIHSS (r=0.49) Although the ED LAMS correlated moderately with 3-month mRS, r=0.55, the association of prehospital LAMS with 3-month mRS was less strong (r=0.34)	LAMS score correlates well with NIHSS and outcomes when performed in the ED but only moderately when performed by prehospital personnel This paper did not address the utility of LAMS for LVO detection and triage
McMullan JT, et al. ³⁴⁰ 2017 28121225	Study type: Observational study Size: N=58	Inclusion criteria: Prehospital suspected stroke (FAST-positive), C- STAT scored, and transported to a comprehensive stroke center or having a stroke team consult note	1° end point: C-STAT sensitivity and specificity Results: C-STAT sensitivity and specificity for each outcome were: • NIHSS≥ 15, 77% (95% CI, 46–95) and 84% (95% CI, 69–93) • NIHSS≥10, 64% (95% CI, 41–83) and 91% (95% CI, 76–98) • LVO, 71% (95% CI, 29–96) and 70% (95% CI, 55–83)	Among FAST-positive prehospital suspected stroke patients, C-STAT could be readily performed and incorporated into the prehospital workflow The small study sample size and regional restriction preclude meaningful conclusions on test characteristics for predicting LVO to inform prehospital triage
		Exclusion criteria: FAST-negative		

Abbreviations: AUC indicates area under the receiver operating characteristic curve; CI, confidence inter\val; C-STAT, Cincinnati Stroke Triage Assessment Tool; ED, emergency department; EMS, emergency medical services; FAST, Face Arm Speech Time algorithm; LAMS, Los Angeles Motor Scale; LVO, large vessel occlusion; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; and RACE, Rapid Arterial Occlusion Evaluation.

Literature search topic: Public Education, EMS assessment and management: recognize, call 911

Table V. Nonrandomized Studies of Stroke Systems of Care

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Saver JL, et al. ³¹ 2013 23780461	Study type: Retrospective analysis of IV alteplase-treated patients in the Get With The Guidelines (GWTG) database Size: 58,353 IV alteplase-treated ischemic stroke patients	Inclusion criteria: Hospitals participating in GWTG from April 1, 2003 to April 1, 2012 Exclusion criteria: Sites missing data on medical history in more than one- quarter of patients Sites with fewer than 30 patients Cases with in- hospital stroke Individuals treated with intra-arterial recanalization therapy Missing or imprecise onset, arrival, or treatment time data Treatment beyond 4.5 h	1° end point: The relationship between onset to treatment time and clinical outcome measures Results: In 15 min increments, faster onset to treatment time was associated with: • reduced in-hospital mortality (OR, 0.96; 95% CI, 0.95-0.98; P<.001) • reduced symptomatic intracranial hemorrhage (OR, 0.96; 95% CI, 0.95-0.98; P<.001) • increased achievement of independent ambulation at discharge (OR, 1.04; 95% CI, 1.03-1.05; P<.001) • increased discharge to home (OR, 1.03; 95% CI, 1.02-1.04; P<.001)	Earlier treatment with IV alteplase is associated with reduced mortality, reduced intracranial hemorrhage rates and improved outcomes.

		Discharge destination data not indicative of functional status		
Saver JL, et al. ³² 2016 27673305	Study type: Meta-analysis of five pooled randomized controlled trials Size: 1,287	Inclusion criteria: Randomized phase 3 trials that used stentrievers or other second generation thrombectomy devices Manuscript published by July 1, 2016 Exclusion criteria: Unpublished trials Non-phase 3 randomized trials/publications	1° end point: Association between treatment times and outcomes Results: • 634 subjects in endovascular group and 653 in medical therapy group • Endovascular therapy was associated with lower patient disability at 3 mo, with mRS scores of 2.9 (95% CI, 2.7-3.1) in the endovascular group and 3.6 (95% CI, 3.5-3.8) in the medical therapy group • The degree of benefit from thrombectomy nominally declined with longer times from symptom onset to thrombectomy; odds of functional independence (mRS 0-2) were: OR at 3 h, 2.83 (95% CI, 2.07-3.86); OR at 6 h, 2.32 (95% CI, 1.56-3.44); OR at 8 h, 2.03 (95% CI, 1.03-3.99) • Benefit of thrombectomy became non-significant at 7.3 h	Earlier treatment with thrombectomy is associated with lower degrees of disability.

Abbreviations: CI indicates confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; and RR, relative risk. **Literature Search:** Public education, EMS assessment and management: recognize, call 911

Table VI. Nonrandomized Studies of Hospital Stroke Capabilities

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Man S, et al. ³⁴ 2017 28008094	Study type: Retrospective analysis of GWTG data from January 1,	Inclusion criteria: Acute ischemic stroke cases admitted to PSCs participating in	1° end point: Quality of care (seven performance measures) and outcomes compared between different PSC certification types Results:	Globally, data support the development of stroke centers to improve patient care and outcomes

	2010, and December 31, 2012	GWTG during the study period	 Of 977 certified PSCs, 73.8% were JC certified, 3.7% DNV, 1.2% HFAP, and 21.3% state-based All the hospitals had high conformity with the seven 	
	Size: N=477,297	Exclusion criteria: Non-ischemic stroke Missing discharge status Left against medical advice Transfer-in cases	performance measures • Alteplase use rates were higher in JC and DNV (9.0% and 9.8%) than state and HFAP (7.1% and 5.9%) hospitals (<i>P</i> <0.0001)	
Ganesh A, et al. ³³ 2016 26850979	Study type: Retrospective study of administrative database	Inclusion criteria: Hospitalized stroke and TIA patients from 2003/2004 to 2013/2014 in Canada	1° end point: Stroke case-fatality Results: 30-day mortality rate decreased from 15.8% in 2003/2004 to 12.7% in 2012/2013 in provinces with stroke systems, but remained 14.5% in provinces without stroke	Implementation of stroke systems was associated with population-wide reductions in stroke mortality
	Size: N=319,972	Exclusion criteria: Quebec hospitals	systems	

Abbreviations DNV indicates Det Norske Veritas; GWTG, Get With The Guidelines; HFAP, Healthcare Facilities Accreditation Program; JC, Joint Commission; PSC, primary stroke center; and TIA, transient ischemic attack.

Literature search topic: Increasing alteplase treatment in stroke

Table VII. Nonrandomized Studies of Hospitals Achieving Rapid Door-to-Needle Times for IV Alteplase in Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; 95% CI)	Summary/Conclusion Comment(s)
Xian Y, et al. ³⁶ 2017 <u>28096207</u>	Study type: Retrospective, observational study of 888 hospitals. Size: 16,901 patients with AIS treated with alteplase within 4.5h of onset.	Inclusion criteria: Patients receiving IV alteplase within 4.5 hours of symptom onset between June 2014 and April 2015. Exclusion criteria: N/A	1º endpoint: No primary endpoint declared. Door-to-needle times for alteplase administration determined along with survey assessing extent which hospitals were using the Target:Stroke interventions to reduce DTN times and quantify the association. Results: • Median DTN time for alteplase administration was 56 minutes (IQR 42-75).	 Median DTN times of less than 60 minutes were achievable in a majority of patients. The achievement of DTN times within 45 minutes is feasible in a substantial proportion of patients.

Fonarow GC, et al. ³⁵ 2014 24756513	Study type: Retrospective, observational study with pre-/post- Target:Stroke intervention design using GWTG hospital convenience sample Size: 71,169 patients with AIS treated with tPA (27,319 pre- intervention period, 43,850 post- intervention period) at 1,030 Get With The Guidelines- Stroke participating	Inclusion criteria: Patients receiving guideline concordant intravenous alteplase at GWTG-Stroke participating hospitals from April 2003 to Sept 2013. Exclusion criteria: N/A	 59.3% of patients received IV alteplase within 60 minutes. 30.4% of patients were treated within 45 minutes. 16 strategies were associated with significant reductions in DTN times. 1º endpoint: No primary endpoint declared. Door-to-needle times for alteplase administration; in-hospital all-cause mortality; discharge status determined. Results: • Median DTN time for tPA administration declined from 77 minutes (IQR, 60-98 minutes) during the pre-intervention period to 67 minutes (IQR, 51-87 minutes) during the post-intervention period (P < .001). • The DTN times for tPA administration of 60 minutes or less increased from 26.5% (95% CI, 26.0%-27.1%) of patients during the pre-intervention period to 41.3% (95% CI, 40.8%-41.7%) during the post-intervention period (P<.001) 	Implementation of the Target:Stroke quality improvement initiative was associated with improved timeliness of tPA delivery. Median hospital door-to-needle target times of less than 60 minutes were achievable in over 50% of cases.
	Stroke participating hospitals (52.8% of total)			
Sauser K, et	Study type:	Inclusion criteria:	1º endpoint:	In this study, mean and median
al. ³⁴¹	Retrospective,	Patients receiving IV	Continuous measure of DTN time, in minutes, from	DTN times exceeded 60 minutes in
2014	observational study	alteplase within 4.5	emergency department arrival to thrombolytic delivery.	a clear majority of patients.
<u>25023407</u>	of 25 hospitals.	hours of symptom	Descritor	
	Size: 1193 patients with AIS treated with	onset between Jan 2009 and Dec 2012.	Results:	Approximately one-quarter of patients were treated within 60 minutes.

alteplase within 4.5h	Exclusion criteria:	Mean (SD) DTN time for alteplase administration was 82.9	
of onset.	N/A	minutes (35.4). Median time was 76 minutes.	
		• 28.7% of patients received IV alteplase within 60 minutes.	

Abbreviations: CI indicates confidence interval; DTN, Door-to-Needle; HR, hazard ratio; IQR, interquartile range; N/A, not available; OR, odds ratio; and RR, relative risk. **Literature search topic:** Achieving rapid door-to-needle treatment time in stroke

Table VIII. Randomized Clinical Trials Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
INSTINCT Scott PA, et al. ³⁸ 2013 23260188	Aim: To test a multilevel intervention to increase community hospital alteplase use Study type: Multicenter cluster RCT using matched-pair design Size: N= 24 hospitals	Inclusion criteria: Adult, non-specialty, acute-care, community hospitals in Michigan with ≥ 100 stroke patients/y Exclusion criteria: Academic comprehensive stroke centers; hospitals with >100,000 ED visits per year	Intervention: Standardized, barrier- assessment, multicomponent intervention (n=12) Comparator: No intervention (n=12)	1° end point: From preto post-intervention periods, alteplase use increase in intervention group hospitals (59/5882 [1.00%] to 191/7288 [2.62%]) was significantly greater than control group (65/5957 [1.09%] to 120/6989 [1.72%]); RR, 1.68; 95% CI, 1.09–2.57; P=0.02. Safety end point: Total symptomatic intracranial hemorrhage within 36 hoccurred in 24/404 [5.9%]; total mortality was 62/557 [11.1%]; between group differences were NS (P=0.84)	The difference was not significant in the comparison based on the mixed-effects Poisson model (RR 1.37, 95% CI 0.96–1.93; P=0.08;	One hospital pair was excluded from analysis due to conversion to academic comprehensive stroke center mid-trial	The pragmatic INSTINCT multilevel intervention modestly increased alteplase use in target group community hospital EDs Identified safety of alteplase use in community EDs with sufficient numbers to ensure precise safety metrics

PRACTISE Dirks M, et al. ³⁹ 2011 21393587	Aim: To test a multidimensional implementation strategy to increase alteplase use Study type: Multicenter, cluster-randomized controlled trial using matched pair design Size: N=5515 patients admitted with stroke (12 hospitals); 2990 in 6 intervention hospitals, 2525 in 6 control hosptials	Inclusion criteria: Convenience sample 12 hospitals Exclusion criteria: None listed	Intervention: Intervention meetings based on Breakthrough Series model (n=6 hospitals) Comparator: No intervention (n=6 hospitals)	1° end point: Intervention hospitals treated 393 (13.1% of all patients with acute stroke) vs. 308 (12.2%) at control hospitals, adjusted OR, 1.25 (95% CI, 0.93–1.68) Safety end point: Symptomatic intracranial hemorrhage rate was 5.6% (intervention) vs. 4.6% (control); RR, 1.08; 95% CI, 0.83–1.43	Among the 1657 patients with ischemic stroke admitted within 4 hours from onset, 391 (44.5%) of 880 in the intervention centers were treated with thrombolysis and 305 (39.3%) of 777 in the control centers (adjusted OR, 1.58 (95% CI, 1.11-2.27).	The intensive intervention may not be generalizable to all hospital settings as it included forming local teams consisting of a stroke neurologist and stroke nurse	The PRACTISE intervention increased the proportion of stroke patients treated with alteplase
--	---	--	---	--	--	---	--

Abbreviations: CI indicates confidence interval; ED, emergency department; HR, hazard ratio; NS, not significant; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk. Literature search topic: Increasing alteplase treatment in stroke

Table IX. Nonrandomized Studies Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Ganesh A, et al. 33 2016 26850979	Study type: Retrospective cohort analysis Size: N=319,972	Inclusion criteria: Patients with stroke (ischemic or hemorrhagic) or TIA admitted to acute care hospitals in Canada in fiscal years 2003/2004 to 2013/2014 Exclusion criteria: Patients hospitalized in Quebec province	1° end point: Crude 30-day mortality Results: Crude 30-day mortality rate decreased from 15.8% in 2003/2004 to 12.7% in 2012/2013 in provinces with stroke systems, while remaining 14.5% in provinces without such systems Starting with the fiscal year 2009/2010, there was a clear reduction in relative mortality in provinces with stroke systems vs. those without, sustained at aIRR of 0.85 (95% CI, 0.79–0.92) in the 2011/ 2012, 2012/2013, and 2013/2014 fiscal years	First demonstration of population-wide reduction in mortality from stroke systems of care Could not account for the potential effects of concurrent interventions, such as stroke specialist training programs and variability in adherence to national best practices recommendations The outcome of 30-day mortality in the study may not reflect other clinical outcomes of interest, like 90-d or longer-term mortality

		because complete data were not available	The surveys indicated that facilities in provinces with such systems were more likely to care for patients on a stroke unit, and have timely access to a stroke prevention clinic and telestroke services	
Fonarow GC, et al. ³⁵ 2014 24756513	Study type: Target: Stroke intervention (multi- modal), pre-post design, convenience sample Size: N=71,169	Inclusion criteria: Patients with AIS treated with alteplase GWTG hospital Exclusion criteria: Not treated with alteplase Transferred from another facility Had stroke while in hospital	1° end point: DTN times for alteplase administration of ≤60 min Results: • Median DTN time for alteplase administration declined from 77 min (IQR: 60–98 min) during the preintervention period to 67 min (IQR: 51–87 min) during the postintervention period (<i>P</i> <0.001) • DTN times for alteplase administration ≤60 min increased from 26.5% (95% CI, 26.0%–27.1%) of patients during the preintervention period to 41.3% (95% CI, 40.8%-41.7%) during the postintervention period (<i>P</i> <0.001)	Implementation of a national quality improvement initiative was associated with improved timeliness of alteplase administration following AIS on a national scale, and this improvement was associated with lower in-hospital mortality and intracranial hemorrhage, along with an increase in the percentage of patients discharged home Study limitations included convenience sample; lack of concurrent control; potential unmeasured confounders; retrospectively collected data
van Wijngaarden JD, et al. ³⁴² 2011 <u>21613273</u>	Study type: Prospective observational cohort Size: N=5515	Inclusion criteria: • Patients age>18 y admitted with acute stroke • Symptom onset ≤24 h before admission Exclusion criteria: N/A	1° end point: Treatment with thrombolysis or not as measured by proportion of stroke patients admitted within 24 h of symptom onset treated with thrombolysis Results: • The unadjusted multilevel logistic regression shows a significant association between thrombolysis rates and availability of intramural protocols (OR, 1.46; 95% CI, 1.12–1.91) • After adjusting for hospital size and teaching vs. nonteaching hospitals, the strength of the association increased (adjusted OR, 1.77; CI, 1.30–2.39)	Intramural protocols are important tools to increase thrombolysis rates for acute ischemic stroke in hospitals The study was carried out at 12 sites
Jeng JS, et al. ³⁴³ 2009 19362319	Study type: Multicenter national Taiwan stroke center survey Size: Survey sent to 17 medical centers/69 regional teaching hospitals in	Inclusion criteria: Qualified medical centers and regional teaching hospitals in Taiwan Exclusion criteria: N/A	1° end point: Factors influencing administration of thrombolytic therapy were analyzed Results: • The frequency of thrombolytic therapy administration significantly correlated with stroke center criteria (Spearman's rho=0.731, <i>P</i> <0.001)	Well-organized stroke centers, routine use of thrombolytic therapy protocols in the emergency room, and guidance by a stroke center director are important for enhancing thrombolytic therapy in patients with acute ischemic stroke

	2004, and 19 medical centers/97 regional teaching hospitals in 2006		• Multivariate analysis showed routine IV alteplase protocol in the ED (OR, 4.6; <i>P</i> =0.042) and supervision by the stroke center director OR, 3.7; <i>P</i> =0.031) significantly influenced the administration of thrombolytic therapy	
Douglas VC, et al. ³⁴⁴ 2005 15699369	Study type: Retrospective multicenter study Size: N=16,853 patients (34 academic medical centers)	Inclusion criteria: Patients admitted with ischemic stroke Exclusion criteria: Patients <18 y were excluded from analysis of alteplase	1° end point: In-hospital mortality rate Results: None of the 11 major stroke center elements was associated with decreased in-hospital mortality or increased frequency of discharge home In-hospital mortality rate was 6.3% (n=1062), and 2.4% (n=399) of patients received alteplase	 Four elements predicted increased alteplase use, including written care protocols, integrated EMS, organized EDs, and continuing medical/public education in stroke (each OR>2.0, P<0.05) Use of alteplase also tended to be greater at centers with an acute stroke team, a stroke unit, or rapid neuroimaging (each OR>2.0, P<0.10)
Asimos AW, et al. ³⁴⁵ 2004 15064210	Study type: Retrospective registry review of single community teaching hospital Size: N=255	Inclusion criteria: • History and physical exam consistent with acute stroke Exclusion criteria: • Age≤18 y • Stroke onset >2 h prior to triage And many others	Property 10 Prope	ED-directed CSPs are a feasible and effective means to screen AIS patients for treatment with thrombolysis There were multiple study limitations

Abbreviations: aIRR indicates adjusted incidence rate ratio; AIS, acute ischemic stroke; CI, confidence interval; CSP, code stroke protocol; DTN, door-to-needle; ED, emergency department; EMS, emergency medical services; GWTG, American Heart Association's Get with the Guideline; h, hour; IQR, interquartile range; IV, intravenous; min, minutes; NINDS, National Institute of Neurological Disorders and Stroke; OR, odds ratio; and sICH, symptomatic intracerebral hemorrhage.

Literature search topic: Increasing alteplast treatment in stroke AND Achieving rapid door-to-needle treatment time in stroke AND Benefit of participation in QI registry

Table X. Randomized Clinical Trials of Level of Agreement Between Central Read and Spoke Radiologists and Hub Neurologists in Interpreting Head Computed Tomography Scans of Stroke Patients Presenting to Telestroke Hospitals

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Spokoyny I, et al. ⁴⁴ 2014 23697761	Aim: To determine the agreement levels between central read and each of two groups, spoke radiologists and hub vascular neurologists, on head CT scans of stroke patients Study type: Pooled RCTs Size: N=261	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine arm: CT interpretation by hub vascular neurologist and central read (n=130) Comparator: Telephone arm CT interpretation by spoke radiologist and central read (n=131)	1° end point: Level of agreement between central read and spoke radiologists and hub neurologists in interpreting head CT scans of stroke patients presenting to telestroke hospitals: overall agreement (95.4%; κ=0.74; 95% CI, 0.59– 0.88) Safety end point: N/A	Vascular neurologist and spoke radiologist percent agreement with central read in the presence of normal scan (74.6%,77.1%), acute stroke (74.6%,77.9%), ICH (99.2%, 98.5%), SAH (98.5%, 96.9%), subdural hematoma (100%, 100%), tumor (100%, 97.7%), and hyperdense artery (93.8%, 88.5%)	Low incidence of secondary end points that resulted in less opportunity to assess differences between groups Bias in favor of the interpreting vascular neurologist	Reports from neurologists and spoke radiologists had excellent reliability in identifying radiologic contraindications to IV alteplase These pooled findings demonstrated that telestroke evaluation of head CT scans for acute stroke assessments were reliable
Puetz V, et al. ⁴⁵ 2013 23255831	Aim: To determine the reliability and therapeutic impact of standardized cerebral CT evaluation by telestroke neurologists Study type: retrospective cohort study of	Inclusion: Acute stroke syndrome patients Exclusion: NA	NA	NA	The neuroradiologists detected discrepant CT findings in 43 patients (8.0%) that were rated as clinically relevant in 9 patients (1.7%).	Retrospective study design and interpretation bias	Clinically relevant mis- interpretations of the CT scans were rare in an acute telestroke service

	prospectively collected data Size: N=536						
Demaerschalk BM, et al. ⁴³ 2012 22984007	Aim: To determine the agreement levels between neuroradiologists and each of 2 groups, spoke radiologists and telestrokologists, on baseline brain CT scan of acute stroke patients Study type: RCT Size: N=54	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine Arm: CT interpretation by spoke radiologist and hub neuroradiologist (n=27) Comparator: Telephone-only Arm: CT interpretation by telestrokologist and neuroradiologist (n=26)	1° end point: Level of agreement between central read and spoke radiologists and hub neurologists in interpreting head CT scans of stroke patients presenting to telestroke hospitals: overall agreement 91.0% Safety end point:	Spoke radiologist and telestrokologist percent agreement with hub neuroradiologist in the presence of normal scan (85%, 89%), acute stroke (81%, 73%), chronic stroke (63%, 85%), edema (78%, 77%), tumor (96%, 100%), hyperdense artery (93%, 92%)	Small number of subjects Concern about applicability of the findings to real world of acute head CT interpretation in patients Bias in favor of the interpreting telestrokologist	In the context of a telestroke network designed to assess patients with acute stroke syndromes, agreement over the presence or absence of radiological contraindication s to IV alteplase was excellent whether the comparisons were between a telestrokologist and neuroradiologist or between spoke radiologist and neuroradiologist and neuroradiologist

Abbreviations: CI indicates confidence Interval; CT, computed tomography; h, hours; ICH, intracerebral hemorrhage; IV, intravenous; N/A, not available; RCT, randomized clinical trial; and SAH, subarachnoid hemorrhage. **Literature search topic**: Telestroke and Teleradiology

Table XI. Randomized Clinical Trials Comparing Synchronous Audio Video Telemedicine to Telephone-Only for Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
STRokEDOC Pooled Analysis Demaerschalk BM, et al. ⁴⁶ 2012 22400970	Aim: To assess whether telemedicine or telephone consultation was superior for acute stroke decision making Study type: Meta-analysis of RCTs Size: N=276	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine (n=138) Comparator: Telephone (n=138)	1° end point: Correct thrombolysis decision making: 96% vs. 83%, OR, 4.2 (95% CI, 1.7–10.5; <i>P</i> =0.002) Safety end point: N/A	Alteplase use rate 29% vs. 24% (OR, 1.27; 95% CI, 0.71– 2.25; <i>P</i> =0.41), 90 d BI 46% vs. 45% (OR, 0.69; 95% CI, 0.41– 1.16; <i>P</i> =0.167), 90 d mRS 36% vs. 38% (OR, 0.70; 95% CI, 0.41-1.19; <i>P</i> =0.201), ICH rate 8% vs. 6% (<i>P</i> >0.999)	Underpowered to detect differences in 90 d functional outcome	Pooled analysis supported the hypothesis that telemedicine consultations, compared with telephone only, resulted in more accurate decision making
STRokEDOC AZ TIME Demaerschalk BM, et al. ³⁴⁶ 2010 20431081	Aim: To assess the efficacy of telemedicine and telephone consultations for acute stroke decision making Study type: RCT Size: N=54	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine (n=27) Comparator: Telephone (n=27)	1° end point: Correct thrombolysis decision making: 85% vs. 89% (<i>P</i> >0.99) Safety end point: N/A	• Thrombolytic use rate 30% vs. 30% (<i>P</i> >0.99), 90 d BI 59% vs. 58% (<i>P</i> =0.77), 90 d mRS 46% vs. 38% (<i>P</i> =0.61), ICH rate 4% vs. 0% (<i>P</i> >0.99)	Trial was not designed to detect a difference between telemedicine and telephone only modes of consultation	 Not designed to have sufficient power to detect a difference Feasibility RCT Technical problems were frequent
STRokEDOC Meyer BC, et al. ³⁴⁷ 2008 <u>18676180</u>	Aim: To compare telemedicine to telephone consultations for assessing decision making in acute stroke Study type: RCT	Inclusion criteria: Acute stroke syndrome Exclusion criteria:	Intervention: Telemedicine (n=111) Comparator: Telephone (n=111)	1° end point: Correct thrombolysis decision making: 98% v 82%, OR: 10.9 (95% CI, 2.7–44.69; <i>P</i> =0.0009) Safety end point: N/A	• Alteplase userate 28% vs. 23% (OR,1.3; 95% CI, 0.7–2.5; P=0.4248), 90 d BI (OR, 0.6; 95% CI, 0.4–1.1;	Increase in alteplase use not measured Absence of placebo comparator, resulting in	First trial to establish the benefit of telemedicine over telephone specifically for

	Time >12 h,		P=0.1268), 90 d	underestimating	acute medical
Size: N=222	incarceration		mRS (OR, 0.6;	the true benefit	decision-making
			95% CI, 0.3–1.1;	of telemedicine	 Stopped early
			<i>P</i> =0.0898), ICH	Lack of	for superiority
			rate 7% vs. 8%	complete	
			(OR, 0.8; 95%	reproducibility	
			CI, 0.1–6.3;	between	
			<i>P</i> =1.0)	telephone	
				practice in "real	
				world" and the	
				trial	

Abbreviations: BI indicates Barthel Index; CI, confidence interval; h, hours; ICH, intracerebral hemorrhage; mRS, modified Rankin Scale; N/A, not available; OR, odds ratio; RCT, randomized clinical trial.

Literature search topic: Telestroke and Teleradiology

Table XII. Nonrandomized Trials, Observational Studies, and/or Registries of Telestroke for Triaging Patients for Endovascular Therapy

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Barlinn J, et al. ⁴⁹ 2017 27899742	Study type: Retrospective review of consecutively collected cases Size: N=151 48 (31.8%) patients were transferred after teleconsultation and 103 (68.2%) were primarily admitted to our emergency department.	Inclusion criteria: Patients with intracranial large vessel occlusion who underwent endovascular treatment presenting either via telestroke network or directly Exclusion criteria: NA	1° end point: Baseline characteristics, onset-to-treatment times, symptomatic intracranial hemorrhage, in-hospital mortality, reperfusion (modified Treatment in Cerebral Infarction 2b/3), and favorable functional outcome Results: Transferred patients were younger (<i>P</i> =0.020), received more frequently intravenous tissue plasminogen activator (<i>P</i> =0.008), had prolonged time from stroke onset to endovascular treatment initiation (<i>P</i> <0.0001) and tended to have lower rates of symptomatic intracranial hemorrhage (4.2% vs. 11.7%; <i>P</i> =0.227) and mortality (8.3% vs. 22.6%; <i>P</i> =0.041) than directly admitted patients. Similar rates of reperfusion (56.2% vs. 61.2%; <i>P</i> =0.567) and favorable functional outcome (18.8% vs. 13.7%; <i>P</i> =0.470) were observed in telestroke patients and those who were directly admitted.	Telestroke networks may enable delivery of endovascular treatment to selected ischemic stroke patients transferred from remote hospitals that is equitable to patients admitted directly to tertiary hospitals.

Kepplinger J, et al. ⁴⁷ 2016 27566746	Study type: Systematic review and meta-analysis Size: 7 studies totaling 1,863 patients	Inclusion criteria: studies which evaluate the safety and efficacy of IV thrombolysis (IVT) with tissue plasminogen activator (tPA) delivered through telestroke networks in patients with acute	1° end point: functional independence, SICH, mortality Results: Symptomatic intracerebral hemorrhage rates were similar between patients subjected to telemedicine-guided IVT and those receiving tPA at stroke centers (risk ratio [RR],1.01; 95% CI, 0.37-2.80; <i>P</i> =0.978) with low evidence of heterogeneity (I(2), 37%; <i>P</i> =0.189). There was no difference in mortality (RR, 1.04, 95% CI, 0.74-1.48; <i>P</i> =0.806) or in functional independence (RR, 1.11; 95% CI, 0.78-1.57; <i>P</i> =0.565) at 3 mo between telemedicine-guided and stroke center thrombolysis. No heterogeneity was identified (I(2),	IV tPA delivery through telestroke networks is safe and effective in the 3-h time window.
		in patients with acute ischemic stroke. Exclusion criteria: NA	center thrombolysis. No heterogeneity was identified (I(2), 0%; <i>P</i> =0.964 and I(2), 52%; <i>P</i> =0.123, respectively).	

Abbreviations: CI indicates confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; and RR, relative risk.

Literature Search: Telestroke and Teleradiology

Table XIII. Nonrandomized Trials, Observational Studies, and/or Registries of Alteplase Decision-Making via Telephone Consultation

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Fong, WC, et al. ⁴⁸ 2015 25906936	Study type: Retrospective Comparative Cohort Study Size: N=152	Inclusion criteria: Patients with stroke treated with IV alteplase by telephone with teleradiology compared with patients treated by inperson assessment Exclusion criteria: N/A	1° end point: clinical outcomes, sICH, mortality Results: • Excellent clinical outcome achieved by 52% of telephone group vs 43% of the neurologist on-site group (<i>P</i> =0.30) • Symptomatic intracranial hemorrhage 4.0% vs 4.9% (<i>P</i> =1.0) • Mortality 8.3 vs 11.9% (<i>P</i> =0.49)	Telephone consultation and teleradiology-guided IV alteplase administration appeared safe and effective Limitations: small sample size, non-randomized design

Table XIV. Nonrandomized Studies Assessing the Impact of Stroke System Quality Improvement Processes

Study	Study	Patient	Primary Endpoint and Results	Summary/Conclusion
Acronym;	Type/Design;	Population	(P values; OR or RR; 95% CI)	Comment(s)
Author;	Study Size			
Year				
Published				
Ganesh A, et	Study type:	Inclusion	1° endpoint:	A sustained decrease in
al. ³³	Retrospective,	criteria:	Summary statistics used to describe all patient and stroke resource information.	30-day in-hospital mortality
2016	cohort analysis	All patients with	Multivariable generalized linear Poisson regression model constructed for 30-day	over time was identified in
<u>26850979</u>	using Canadian	stroke (ischemic	in-hospital mortality included the following predictors: presence or absence of a	Canadian provinces with
	Institute of Health	or hemorrhagic)	stroke system, fiscal years of discharge, common prognostic variables (age, sex,	integrated stroke systems of
	Information's	or TIA admitted	stroke type and comorbid conditions). Comparison of adjusted incidence rate	care compared to provinces
	Discharge	to Canadian	ratio (aIRR) for each single fiscal year, estimated from the model, compared	without such systems.
	Abstract	acute care	provinces with stroke systems of care vs. those without.	These data demonstrate
	Database	hospital		an association between
	(excludes	(excluding	Results:	integrated stroke systems of
	Province of	Quebec)	Overall crude 30-day mortality rate decreased from 15.8% in 2003/04 to 12.7%	care and population-wide
	Quebec) from		in 2013/14 in the provinces with stroke care systems, while remaining constant at	reduction in acute stroke
	2003/04 to	<u>Exclusion</u>	14.5% in provinces without such systems.	mortality.
	2012/13	<u>criteria</u> : N/A		
	combined with		• Relative mortality rate (aIRR) was 0.85 (95% CI, 0.79-0.92) in 2013/14 in	
	surveys of stroke		provinces with stroke care systems vs those without.	
	care resources in		a Dries to 2010/11 there was no clear difference in strake mortality between	
	Canadian		Prior to 2010/11, there was no clear difference in stroke mortality between	
	hospitals in 2009		provinces with or without stroke care systems.	
	(n = 309) and			
	2013 (n = 601).			
	Size: Cohort of			
	319,972			
	hospitalized			
	stroke/TIA			
	patients.			

Song S, et	Study type:	Inclusion	1° endpoint:										Hospital adoption of the
al. ⁵⁷	Retrospective,	criteria:		rimary clinical outcomes analyzed functional status; mortality measures;					:	GWTG-Stroke program was			
2016	observational	Hospitals	Secondary outc			•				•			associated with improved
27079809	matched cohort	implementing						,					functional outcomes at
	study using	GWTG-Stroke	Results:										discharge and reduced post-
	difference-in-	between 2003	Adjusted Com	narisc	n of Ch	ange ([Differer	nce-in-F	Difference	es) on	Discha	rae	discharge mortality.
	differences	and 2008 and	Home/Mortality	•		• (,		•	
	design. Changes	matched	Between at Get					•					
	in outcomes at	hospitals that did	With The Guide										
	hospitals joining	not during the					(,				
	GWTG-Stroke	same period.											
	program were	·											
	compared with	Exclusion											
	non-joining	criteria: N/A											
	matched		Discharge		RUN-UI	P		EARL'	Y	;	SUSTAIN	NED	
	hospitals.		home/Mortality Outcomes	HR	95%	P	HR	95%	P	HR	95%	P	
			Discharge	1.07	CI 1.00-	value .06	1.08	CI 1.01-	value 0.02	1.06	CI	value 0.06	
	Size: Matching		Home		1.14			1.16			1.12		
	algorithm		30d Mortality	0.97	0.90- 1.05	0.48	0.92	0.86- 0.99	0.04	0.96	0.90- 1.02	0.16	
	identified 366		1-year Mortality	1.00	0.94-	0.92	0.89	0.85-	0.0001	0.92	0.88-	0.0005	
	GWTG-Stroke				1.05			0.95			0.97		
	adopting												
	hospitals that												
	cared for 88,584												
	AIS admissions												
	and 366 non-												
	GWTG-Stroke												
	hospitals that												
	cared for 85,401												
	AIS admissions												
Fonarow	Study type:	<u>Inclusion</u>	1° endpoint:										Implementation of the
GC, et al.35	Retrospective,	<u>criteria</u> :	No primary end						Target:Stroke quality				
2014	observational	Patients	in-hospital all-ca	ause n	nortality	; discha	rge sta	atus det	termined				improvement initiative was
<u>24756513</u>	study with pre-	receiving											associated with improved
	/post-	guideline	Results:										timeliness of tPA.

Т	Target:Stroke	concordant	Median DTN time for tPA administration declined from 77 minutes (interquartile)	
	ntervention	intravenous	range [IQR], 60-98 minutes) during the pre-intervention period to 67 minutes	This improvement was
	lesign using	alteplase at	(IQR, 51-87 minutes) during the post-intervention period (<i>P</i> <.001). The DTN	associated with lower in-
	GWTG hospital	GWTG-Stroke	times for tPA administration of 60 minutes or less increased from 26.5% (95% CI,	hospital mortality and
	convenience	participating	26.0%-27.1%) of patients during the pre-intervention period to 41.3% (95% CI,	intracranial hemorrhage,
	sample	hospitals from	40.8%-41.7%) during the post-intervention period (<i>P</i> <.001)	along with an increase in the
		April 2003 to	40.070 41.1770) during the post intervention period (1 3.001)	percentage of patients
S	Size: 71,169	Sept 2013.	In-hospital all-cause mortality improved significantly from the pre-intervention to	discharged home.
_	patients with AIS	00pt =0 10.	the post-intervention period (9.93% vs 8.25%, respectively; adjusted odds ratio	diodiai god riomo.
I .	reated with tPA	Exclusion	[OR], 0.89; 95% CI, 0.83-0.94; <i>P</i> <.001). Symptomatic intracranial hemorrhage	
	27,319 pre-	criteria: N/A	within 36 hours was less likely to occur post-intervention (5.68% vs 4.68%;	
,	ntervention		adjusted OR, 0.83; 95% CI, 0.76-0.91; <i>P</i> <.001) and discharge to home was more	
	period, 43,850		frequent (37.6% vs 42.7%; adjusted OR, 1.14; 95% CI, 1.09-1.19; <i>P</i> <.001).	
·	oost-intervention		110quotit (07.0% vo 42.1%, adjustica Ott, 1.14, 50% Ot, 1.05 1.15, 7 4.001).	
	period) at 1,030			
	Get With The			
G	Guidelines-			
S	Stroke			
p	participating			
·	nospitals (52.8%			
0.	of total)			

Abbreviations: CI indicates confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; and RR, relative risk.

Literature search topic: Benefit of participation in QI registry

Table XV. Nonrandomized Trials, Observational Studies, and/or Registries of Computed Tomography and Magnetic Resonance Imaging for Routine Stroke Care

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Wardlaw J, et al. ⁶⁹ 2014 <u>24791949</u>	Study type: Cost-effectiveness of MRI, including DWI, in patients with	Inclusion criteria: Patients with a TIA or minor ischemic stroke/stroke mimics	1° end point: The primary outcome was the incremental cost-effectiveness of MR scanning compared with CT for the whole population	Magnetic resonance with DW-MRI is not cost-effective for secondary stroke prevention for TIA and minor stroke
	transient ischemic attack and minor	presenting within a few hours who are	Results:	MRI was most helpful in patients presenting at >1 wk after symptoms

	stroke; a systematic review, meta-analysis and economic evaluation; decision-analytic model of stroke prevention including on a 20-y time horizon including nine representative imaging scenarios Size: Nine key scanning strategies were assessed in the modelling exercise	not being treated with statins and antiplatelet drugs Exclusion criteria: None provided	Compared with "CT scan all patients" MRI was more expensive and no more cost-effective, except for patients presenting at >1 wk after symptoms to diagnose hemorrhage "One-stop" CT/MRI angiographic-plus-brain imaging was not cost-effective	if blood-sensitive sequences were used • Rapid specialist assessment, CT brain scanning, and identification of serious underlying stroke causes is the most cost-effective stroke prevention strategy
Brazzelli M, et al. ⁶⁸ 2009 19821415	Study type: Review Size: N=308 patients (8 studies)	Inclusion criteria: Studies that either compared DW-MRI and CT in the same patients for detection of ischemic stroke or examined the utility of MRI for detection of hemorrhagic stroke, had imaging performed within 12 h of stroke onset, and presented sufficient data to allow construction of contingency tables Exclusion criteria: Studies that focused on patients presenting exclusively with a clinical syndrome suggesting either	1° end point: Sensitivity and specificity for detection of acute ischemic stroke Results: DW-MRI appears to be more sensitive than CT for the early detection of ischemic stroke in highly selected patients; however, the variability in the quality of included studies and the presence of spectrum and incorporation biases render the reliability and generalizability of observed results questionable	Further well-designed studies without methodological biases, in more representative patient samples, with practicality and cost estimates are now needed to determine which patients should undergo MRI and which CT in suspected acute stroke

al. ⁷⁰ 2004 <u>15459431</u>	Study type: Decision tree representing acute stroke care pathways populated with data from multiple sources; determined the effect of diagnostic information from CT scanning on functional outcome, length of stay, costs, and quality of life during 5 y for 13 alternative CT strategies (varying proportions and types of patients and rapidity of scanning)	subarachnoid hemorrhage or isolated intraventricular hemorrhage; studies that: addressed specific anatomical, metabolic, microvascular, or volumetric aspects of stroke; focused on specific technical aspects of CT and MRI; analyzed perfusion versus diffusion imaging differences in patients with acute cerebral ischemia Inclusion criteria: Data were obtained from many sources including systematic reviews of: (1) the accuracy of clinical diagnosis of stroke; (2) CT scan diagnosis (stroke vs. not stroke and infarct from hemorrhage); (3) antithrombotic drugs for primary treatment and secondary prevention of ischemic stroke and after intracranial hemorrhage; and (4) thrombolysis	1° end point: Cost and QALYs Results: • The most cost-effective strategy was "scan all immediately" (£9 993 676 and 1982.4 QALYs) • The least cost-effective was "scan patients on anticoagulants and those in a life-threatening condition immediately and the rest within 14 d" (£12 592 666 and 1931.8 QALYs) • "Scan no patients" reduced QALYs (1904.2) and increased cost (£10 544 000)	Immediate CT scanning is the most cost-effective strategy For the majority of acute stroke patients, increasing independent survival by correct early diagnosis, ensuring appropriate subsequent treatment and management decisions, reduced costs of stroke and increased QALYs
--	--	---	---	--

Size: The primary	Exclusion criteria:	
analysis was	Subarachnoid	
conducted for a	hemorrhage	
cohort of 1000		
patients aged 70–74		
y and repeated for		
1000 patients aged		
60–64 y and 80–84 y		
in teaching urban and		
rural general		
hospitals		

Abbreviations: CT indicates computed tomography; DWI, diffusion-weighted imaging; h, hour; MRI, magnetic resonance imaging; N/A, not available; QALY, quality-adjusted life year; TIA, transient ischemic attack; and y, year.

Literature search topics: Cost-effectiveness of CT/MRI in acute stroke

Table XVI. Observational Studies of 2016 Door-to-Computed Tomography Times

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Aghaebrahim A, et al. ⁷⁴ 2017 27048957	Study type: Prospective, single- center, observational pre- and post- workflow optimization Size: N=286	Inclusion criteria: Patients with anterior circulation LVO with baseline CT showing an ASPECTS of ≥6 or mismatch between infarct and threatened but viable brain who were treated with endovascular therapy April 2012 to July 2014 Exclusion criteria: No time of onset exclusion	1° end point: Door-to-CT Results: • Pre-optimization, median 14 min (IQR, 6–28) • Post-optimization, median 11 min (IQR, 5–22)	Median 11-min door-to-CT achieved
Lees KR, et al. ⁷³ 2016 27507856	Study type: Pooled analysis of 9 RCTs of IV alteplase	Inclusion criteria: Various by trial	2° end point: Time to treatment interaction with benefit	The earlier the treatment with IV alteplase, the greater the benefit

	Size: N=6756	Exclusion criteria: Various by trial	Results: Treatment initiation within 4.5 h was associated with statistically significant net benefit, 55 patients (95% CI, 13–91) per 1000 treated were better with alteplase (<i>P</i> =0.004), with earlier treatment resulting in bigger proportional benefits	
Messe SR, et al. ⁷⁵ 2016 27629092	Study type: Multicenter, retrospective analysis of Get With the Guidelines database (2003–2011) Size: N=61,698	Inclusion criteria: Within 2 h of onset of ischemic stroke Exclusion criteria: Documented contraindication to thrombolysis	1° end point: Door-to-image time Results: Received alteplase, median 20 min (IQR, 13–30) Did not receive alteplase, median 40 min (IQR, 23–65)	Median 20-min door-to-image achieved
Rai AT, et al. ³⁴⁸ 2016 26863106	Study type: Prospective, single- center, observational pre- and post- workflow optimization Size: N=94	Inclusion criteria: Endovascular patients presenting to ER Exclusion criteria: In-house patients undergoing an intervention for stroke, patients undergoing another procedure in the hospital with a stroke and patients treated with unknown symptom onset	1° end point: ER to CT Results: Pre-optimization, mean 42±8 min; post-optimization, mean 26±13 min (mean±SD)	Mean 26-min door-to-CT achieved
Saver JL, et al. ³² 2016 27673305	Study type: Pooled analysis of 5 RCTs of endovascular treatment with second-generation devices Size: N=1287	Inclusion criteria: Various by trial Exclusion criteria: Various by trial	1° end point: Degree of disability at 3 mo Results: The degree of treatment benefit declined with longer times from symptom onset to expected arterial puncture	The earlier the treatment with mechanical thrombectomy, the greater the benefit
Zaidi SF, et al. ⁷⁶ 2016 <u>27342763</u>	Study type: Prospective, observational before	Inclusion criteria: All Stroke Alert and RACE alert patients	1° end point: Arrival-to-CT Results:	Mean 8.5 min door-to-CT achieved

and after EMS	January 1-December	Pre-intervention, median 15 min (IQR, 7–17)	
training and ED	31, 2015	 Post-intervention, median 8.5 min (IQR, 6–15) 	
protocols in two		,	
hospitals	Exclusion criteria:		
	>12 h since onset		
Size: N=251			

Abbreviations: ASPECTS indicates Alberta Stroke Program Early CT Score; CI, confidence interval; CT, computed tomography; ED, emergency department; EMS, emergency medical services; ER, emergency room; h, hours; min, minutes; IQR, interquartile range; IV, intravenous; LVO, large vessel occlusion; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and SD, standard deviation.

Literature search topic: Door-to-imaging times achievable

Table XVII. Randomized Clinical Trials of Interaction of Baseline Imaging Computed Tomography Hypodensity with Treatment Effect for

Intravenous Alteplase

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Charidimou A, et al. ⁸² 2016 27491738	Study type: Meta- analysis of baseline CT in NINDS rt-PA, ECASS I & II, IST-3 Size: N=2234	Inclusion criteria: For individual trials Exclusion criteria: For individual trials	1° end point: mRS>2 at 90 d or Oxford Handicap Score at 6 mo Results: Statistically significantly lower risk of poor outcome with IV alteplase for patients with leukoaraiosis (OR, 0.75; 95% CI, 0.60–0.95)	Statistically significantly lower risk of poor outcome with IV alteplase for patients with leukoaraiosis (OR: 0.75, 95% CI: 0.60–0.95) in pooled analysis of NINDS rt-PA, ECASS I & II, and IST-3
IST-3 IST-3 Collaborative Group ⁷⁷ 2015 25819484	Study type: Pooled analysis of baseline imaging in NINDS rt-PA, ECASS II, PROACT II, IST-3 Size: N=4567	Inclusion criteria: For individual trials Exclusion criteria: For individual trials	1° end point: Good functional outcome Results: No statistically significant subgroup difference (<i>P</i> =0.94) for IV alteplase effect on functional outcome for ASPECTS subgroups (0–7 vs. 8–10)	No statistically significant subgroup difference (<i>P</i> =0.94) for IV alteplase effect on functional outcome for ASPECTS subgroups (0–7 vs. 8–10) in pooled analysis of NINDS rt-PA, ECASS II, PROACT II, IST-3
IST-3 IST-3 Collaborative Group ⁷⁷ 2015 25819484	Study type: Analysis of baseline CT or MRI in IST-3 Size: N=3017	Inclusion criteria: IST-3 Exclusion criteria: ISt-3	1° end point: Oxford Handicap Score at 6 mo Results: No statistically significant interactions (all P>0.20) for IV alteplase with function outcome for: • Acute ischemic change • Swelling • Tissue attenuation change • Lesion size • Old lesions	No statistically significant interactions (all <i>P</i> >0.20) between baseline imaging × effect of IV alteplase in IST-3

			Leukoaraiosis	
NINDS rt-PA Demchuk AM, et al. ⁷⁸ 2008 <u>18560214</u>	Study type: Analysis of baseline CT in NINDS rt-PA Trial Size: N=788	Inclusion criteria: NINDS rt-PA Exclusion criteria: NINDS rt-PA	1° end point: mRS 0–1 at 90 d Results: Van Swieten Score for leukoaraiosis × IV alteplase interaction: <i>P</i> =0.528	No statistically significant interaction (<i>P</i> =0.528) between baseline Van Swieten Score for leukoaraiosis × effect of IV alteplase in NINDS rt-PA Trial
ECASS II Dzialowski I, et al. ⁷⁹ 2006 16497977	Study type: Analysis of baseline CT in ECASS II Size: N=603	Inclusion criteria: ECASS II Exclusion criteria: ECASS II	1° end point: mRS 0–2 at 90 d Results: ASPECTS × IV alteplase interaction: P=0.29	No statistically significant interaction (<i>P</i> =0.29) between baseline ASPECTS × effect of IV alteplase in ECASS II
NINDS rt-PA Demchuk AM, et al.80 2005 16166579	Study type: Analysis of baseline CT in NINDS rt-PA Trial Size: N=616	Inclusion criteria: NINDS rt-PA Exclusion criteria: NINDS rt-PA	1° end point: Favorable outcome at 3 mo Results: ASPECTS × IV alteplase interaction: "no evidence"	No evidence of treatment effect modification by the baseline ASPECTS value in the NINDS rt-PA Stroke Study
NINDS rt-PA Patel SC, et al.81 2001 11735758	Study type: Analysis of baseline CT in NINDS rt-PA Trial Size: N=616	Inclusion criteria: NINDS rt-PA Exclusion criteria: NINDS rt-PA	1° end point: Favorable outcome at 3 mo Results: Adjusted early ischemic change × IV alteplase interaction, <i>P</i> =0.52	No statistically significant interaction (P=0.52) between baseline CT early ischemic change × effect of IV alteplase in NINDS rt-PA Trial

Abbreviations: ASPECTS indicates Alberta Stroke Program Early CT Score; CI, confidence interval; CT, computed tomography; IV, intravenous; MRI, magnetic resonance imaging; N/A, not available; NINDS, National Institute of Neurological Disorders; and OR, odds ratio.

Literature search topic: CT attenuation IV alteplase interaction; CT attenuation IAT interaction

Table XVIII. Randomized Clinical Trials of Interaction of Baseline Computed Tomography Hyperdense Middle Cerebral Artery Sign with Treatment Effect for Intravenous Alteplase

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
IST-3 Mair G, et al. ⁸⁴	Study type: Analysis of baseline CT in	Inclusion criteria: IST-3	1° end point: Oxford Handicap Score at 6 mo	No statistically significant interaction <i>P</i> =0.167) between baseline HMCAS
2016 26658907	IST3	Exclusion criteria:	Results: No significant interaction with benefit of alteplase, <i>P</i> =0.167	× effect of IV alteplase in IST-3 Trial
	Size : N=2961	IST-3		

IST-3	Study type: Analysis	Inclusion criteria:	1° end point: Oxford Handicap Score at 6 mo	No statistically significant interaction
IST	of baseline imaging	IST-3		(P=0.517) between baseline
Collaborative	in IST3		Results: No interaction between hyperattenuated arteries	hyperattenuated artery × effect of IV
Group ⁷⁷		Exclusion criteria:	and IV alteplase for function outcome (<i>P</i> =0.517)	alteplase in IST-3 Trial
2015	Size: N=3017	IST-3		· ·
<u>25819484</u>				
NINDS rt-PA	Study type: Analysis	Inclusion criteria:	1° end point: mRS 0-1, NIHSS 0-1, Barthel Index ≥95,	No statistically significant interaction
Qureshi AI, et	of baseline CT in	NINDS rt-PA	GOS 0-1, death at 90 days	between baseline HMCAS × effect
al. ⁸³	NINDS rt-PA			of IV alteplase in NINDS rt-PA Trial
2006		Exclusion criteria:	Results: No statistically significant HMCAS × treatment	(P>0.30)
<u>16636232</u>	Size: N=616	NINDS rt-PA	interaction for any of the four clinical scales or death (all	,
			<i>P</i> >0.30)	

Abbreviations: CT indicates computed tomography; GOS, Glasgow Outcome Scale; HMCAS, hyperdense middle cerebral artery sign; IV, intravenous; NIHSS, National Institutes of Health Stroke Scale; and NINDS, National Institute of Neurological Disorders.

Literature search: CT attenuation IV alteplase interaction; Hyperdense MCA IV alteplase interaction

Table XIX. Observational Studies of Interaction of Baseline Magnetic Resonance Imaging of Cerebral Microbleeds with Symptomatic

Intracerebral Hemorrhage After Intravenous Alteplase

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
META- MICROBLEEDS Charidimou A, et al.85 2016 27629086	Study type: Systematic review and analysis of 8 studies Size: N=2601	Inclusion criteria: 1) Defined and assessed sICH risk or 3- to 6-month functional outcome in patients with acute ischemic stroke treated with IV alteplase thrombolysis and (2) quantified this risk in relation to the presence of CMBs detected on pretreatment MRI scans	1° end point: sICH Results: • sICH with CMBs: 6.1% (38/624) vs. sICH w/o CMBs: 4.4% (87/1977), OR, 2.18; 95% CI, 1.12–4.22	sICH statistically significantly more common in those with CMBs (OR, 2.18; 95% CI, 1.12–4.22) but no more common than in NINDS rt-PA Trial

Tsivgoulis G, et al. ⁸⁶ 2016 27088650	Study type: Systematic review and analysis of 9 studies Size: N=2479	Exclusion criteria Studies of patients treated with endovascular therapies were only included in the post hoc subanalysis; in cases of multiple publications from the same or overlapping cohorts, only the report with the largest sample size was used in the analysis Inclusion criteria: Studies of incidence of sICH after IV alteplase in patients with and without cerebral microbleeds on pre-Rx MRI Exclusion criteria: IST-3	1° end point: slCH Results: • slCH with CMBs: 6.5% (38/581) vs. slCH w/o CMBs: 4.4% (87/1898), OR, 2.36; 95% Cl, 1.21–4.61) • slCH with 1–10 CMBs, 6.1% (21/343) vs. slCH with >10 CMBs, 40% (6/15), OR, 7.01; 95% Cl, 3.20–15.38	• sICH statistically significantly more common in those with CMBs (OR: 2.36, 95% CI: 1.21–4.61), but no more common than in NINDS rt-PA Trial • sICH with >10 CMB 40% but occurred only in 15/1808 (0.8%)
NINDS rt-PA Study NINDS rt-PA Study Group ⁸⁷ 1995 7477192	Study type: Randomized, double-blinded controlled trial Size: N=624	Inclusion criteria: Acute ischemic stroke with treatment possible within 3 h of onset Exclusion criteria: NINDS rt-PA	2° end point: sICH withni 36 h Results: • sICH with alteplase 6.4% • sICH w/o alteplase 0.6%	• sICH 6.4% vs. 0.6%, but still overall clinical benefit at 3 mo

Abbreviations: CI indicates confidence interval; CMB, cerebral microbleed; h, hours; IV, intravenous; MRI, magnetic resonance imaging; NINDS, National Institute of Neurological Disorders; OR, odds ratio; and Rx, treatment; sICH, symptomatic intracerebral hemorrhage; and w/o, without.

Literature search topic: Hyperdense MCA IV alteplase interaction II; Interaction of baseline MRI microbleeds with IV alteplase

Table XX. Randomized Clinical Trials of Intravenous Thrombolytics Employing Multimodal Imaging

Table XX. Rand	able XX. Randomized Clinical Trials of Intravenous Thrombolytics Employing Multimodal Imaging						
Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
DIAS 3 Albers GW, et al. ¹⁶⁸ 2015 25937443	Aim: Assess the safety and efficacy of desmoteplase between 3 h and 9 h after symptom onset in patients with occlusion or high-grade stenosis in major cerebral arteries Study type: Phase III RCT Size: N=492	Inclusion criteria: AIS 3– 9 h, 18-85, NIHSS 4–24, occlusion or stenosis of M1, M2, ACA, PCA; mRS 0–1 Exclusion criteria: Pre- stroke mRS >1, standard criteria	Intervention: IV desmoteplase 90 mcg/kg (n=247) Comparator: Placebo (n=245)	1° end point: mRS 0–2 at day 90: desmoteplase 51%, placebo 50%; (adjusted OR, 1.20; 95% CI, 0.79–1.81; <i>P</i> =0.40) Safety end point: SAEs, sICH	• SAEs: desmoteplase 27%, placebo 29% • sICH 3% vs. 2%	N/A	No benefit, no safety concerns
ATTEST Huang X, et al.89 2015 25726502	Aim: Assess the efficacy and safety of tenecteplase vs. alteplase within 4.5 h of stroke onset in a population not selected on the basis of advanced neuroimaging Study type: Phase II RCT Size: N=104	Inclusion criteria: AIS <4.5 h; baseline CT, CTP, CTA Exclusion criteria: Standard criteria	Intervention: IV tenecteplase 0.25 mg/kg (n=52) Comparator: IV alteplase 0.9 mg/kg (n=52)	1° end point: Penumbral salvage: alteplase 68% (23%), tenecteplase 68% (28%), <i>P</i> =0.81 Safety end point: sICH: tenecteplase 6%, alteplase 8%, <i>P</i> =0.59	Recanalization: alteplase 74%, tenecteplase 66%, <i>P</i> =0.38	N/A	Not designed to prove imaging selection hypothesis; no difference in neurologic or radiologic outcomes
IST III Wardlaw JM, et al. ³⁴⁹ 2014 <u>25642519</u>	Aim: To determine if CT or MR perfusion or angiography (CTP/CTA; MRP/MRA) imaging provide important information to guide the use of rt-PA up to 6 h after a stroke	Inclusion criteria: AIS, age≥18 y, <6 h to treatment Exclusion criteria: Standard	Intervention: IV alteplase 0.9 mg/kg (n=NR) Comparator: Standard care (NR)	1° end point: Oxford Handicap Score 0–2 at 6 mo Safety end point: Hemorrhage Neither perfusion lesion size nor mismatch	N/A	N/A	No evidence that imaging biomarkers of mismatch or vessel occlusion modified alteplase

	Study type: Observational study of IST-3 Size: N=151 with perfusion imaging, N=423 with vessel imaging	alteplase exclusions		modified rt-PA effect on hemorrhage or 6-month outcome. • rt-PA effects did not differ between patients with angiographic occlusion compared with those without			treatment effects
Parsons M, et al. ⁹¹ 2012 22435369	Aim: To compare IV tenecteplase vs. IV alteplase enhanced by imaging selection Study type: Phase IIB RCT Size: N=75	Inclusion criteria: AIS <6 h, CTA vessel occlusion Exclusion criteria: Standard alteplase exclusions	Intervention: IV tenecteplase 0.1 mg/kg (n=25); IV tenecteplase 0.25 mg/kg (n=25) Comparator: IV alteplase 0.9 mg/kg (n=25)	1° end point: Percent of perfusion lesion reperfused at 24 h: alteplase 55.4±38.7, tenecteplase 79.3±28.8, P=0.004; extent of clinical improvement (NIHSS) at 24 h: alteplase 3.0±6.3, tenecteplase 8.0±5.5, P<0.001 Safety end point: Parenchymal hematoma: 4% tenecteplase, 16% alteplase (P=0.09)	N/A	N/A	Imaging selection used to identify patients most likely to benefit; not designed to prove selection hypothesis
DIAS 2 Hacke W, et al. ⁹² 2009 <u>19097942</u>	Aim: Investigate further the clinical efficacy and safety of desmoteplase in patients with AIS who have tissue at risk, as assessed by MR PI–DWI or perfusion CT Study type: Phase III RCT Size: N=193	Inclusion criteria: AIS 3– 9 h, 18-85, NIHSS 4-24, 20% diffusion- perfusion mismatch (CT or MRI) Exclusion criteria: Pre- stroke mRS>1, standard criteria, ICA occlusion	Intervention: Desmoteplase 90 mcg/kg (n=57); desmoteplase 125 mcg/kg (n=66) Comparator: Placebo (n=63)	1° end point: Day 90 good outcome (composite): 46% placebo, 47% 90 mcg/kg, 36% 125 mcg/kg Safety end point: ICH: 3.5% 90 mcg/kg desmoteplase, 4.5% 125 mcg/kg desmoteplase, 0% placebo	N/A	N/A	No benefit vs. placebo; not designed to prove imaging selection hypothesis

EPITHET Davis SM, et al. ⁹³ 2008 18296121	Aim: Compare reperfusion and infarct growth measures in patients treated with alteplase vs. placebo 3-6 h from onset Study type: Phase II RCT Size: N=101	Inclusion criteria: AIS 3– 6 h, baseline MRI, age≥18 y, NIHSS>4, MRS≤2 Exclusion criteria: Inability to undergo MRI, standard alteplase criteria	Intervention: IV alteplase 0.9 mg/kg (n=52) Comparator: Placebo (n=49)	1° end point: Infarct growth in mismatch patients (geometric mean): alteplase 1.24; placebo 1.78; ratio 0.69; 95% CI, 0.38–1.28; P=0.239 Safety end point: Not reported	■ Reperfusion greater in alteplase vs. placebo (P=0.001) and associated with better functional outcome (P=0.01) ■ Infarct growth in mismatch patients (geometric mean: reperfusion 0.79; no reperfusion 2.25; ratio 0.35; 95% CI, 0.20—0.63; P=0.001 ■ Good neurologic outcome in mismatch patients: reperfusion 73%, no reperfusion 27%, P<0.0001	Underpowered for no mismatch group	Failed to demonstrate significantly better outcomes in mismatch treated group vs. other groups
DEDAS Furlan AJ, et al. ⁹⁴ 2006 16574922	Aim: Evaluate safety and efficacy of IV desmoteplase in patients with perfusion/diffusion mismatch on MRI 3 to 9 h after onset of acute ischemic stroke Study type: Dose escalation Phase II RCT	Inclusion criteria: AIS 3– 9 h, 18–85 y, NIHSS 4–20, 20% diffusion- perfusion mismatch Exclusion criteria: Standard	Intervention: Desmoteplase 90 mcg/kg (N=14); desmoteplase 125 mcg/kg (N=15) Comparator: Placebo (N=8)	1° end point: • Reperfusion 4–8 h: 37.5% placebo, 18.2% 90 mcg/kg, 53.3% 125 mcg/kg • Good outcome (composite) at day 90: 25%, 28.6%, 60%; desmoteplase overall vs. placebo (<i>P</i> =0.022)	N/A	N/A	Phase II study not powered for clinical end points; not designed to prove penumbral selection hypothesis

	Size: N=37	criteria; ICA occlusion		Safety end point: sICH: none			
DIAS Hacke W, et al. ⁹⁵ 2005 15569863	Aim: Evaluate safety and efficacy of IV desmoteplase in patients with perfusion/diffusion mismatch on MRI 3 to 9 h after onset of acute ischemic stroke Study type: Dose escalation Phase II RCT Size: N=104	Inclusion criteria: AIS 3– 9 h, 18–85 y, NIHSS 4–20, 20% diffusion- perfusion mismatch Exclusion criteria: Prestroke mRS of >1, standard criteria	Intervention: Part 1: desmoteplase 25 mg (n=17), 37.5 mg (n=13), 50 mg (n=13); Part 2: 62.5 mcg/kg (n=15), 90 mcg/kg (n=15), 125 mcg/kg (n=15) Comparator: Placebo Part 1: (n=16); Part 2 (n=11)	1° end point: • Reperfusion 4–8 h: up to 71.4% (<i>P</i> =0.0012) in desmoteplase vs. 19.2% placebo • Good outcome (composite) at day 90: Part 2: 22.2% placebo, 13.3%–60% desmoteplase Safety end point: sICH; Part I: halted due to sICH; part 2: 0% placebo, 2.2% desmoteplase	N/A	Part I: halted due to sICH	Phase II study not powered for clinical end points; not designed to prove penumbral selection hypothesis

Abbreviations: ACA indicates anterior cerebral artery; AIS, acute ischemic stroke; CI, confidence interval; CT, computed tomography; CTA, computed tomography angiography; CTP, computed tomography perfusion; h, hours; ICA, internal carotid artery; IV, intravenous; M1, middle cerebral artery segment 1; M2, middle cerebral artery segment 2; MRI, magnetic resonance imaging; MR PI-DWI, magnetic resonance perfusion imaging—diffusion-weighted imaging; MRP/MRA, magnetic resonance perfusion/magnetic resonance angiography; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NR, not reported; OR, odds ratio; PCA, posterior cerebral artery; RCT, randomized clinical trial; SAEs, serious adverse events; sICH, symptomatic intracerebral hemorrhage; and y, years.

Literature search topic: Multimodal imaging

Table XXI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Thrombolytics Employing Multimodal Imaging

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
DEFUSE	Study type: Single-	Inclusion criteria:	1° end point: FCR	Single-arm study not designed to
Albers GW, et al.88	arm study	AIS 3–6 h, age ≥18 y, NIHSS>5, MRS≤2,	Results:	determine if MRI profiles can identify clinical responders treated with IV
2006	Size: N=74	baseline MRI	• FCR in Mismatch with Reperfusion (n=18): 56% (34–75)	alteplase 3–6 h from onset
<u>17066483</u>		Facility is a suitable.	• FCR in Mismatch without Reperfusion: (n=16): 19% (7–43)	Single-arm study not designed to
		Exclusion criteria: Prestroke mRS>2	• FCR in TM with Reperfusion (n=15): 67% (42-84)	prove penumbral selection
		1 163ti OKE IIINO>Z	TM without Reperfusion (n=16): 19% (7-43)	hypothesis

Abbreviations: AIS indicates acute ischemic stroke; CI, confidence interval; FCR, favorable clinical response; IV, intravenous; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; TM, target mismatch; and y, years **Literature search topic**: Multimodal imaging

Table XXII. Nonrandomized Trials, Observational Studies, and/or Registries of Creatinine Testing Prior to Contrast Computed Tomography

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Ehrlich ME, et al. 96 2016 27364528	Study type: Retrospective observational study Size: N=289	Inclusion criteria: Acute ischemic stroke patients comparing CTA vs. no CTA Exclusion criteria: Inpatient acute stroke alerts; missing 24–48 h creatinine value	1° end point: Acute kidney injury and time to IV alteplase, mean creatinine Results: Mean creatinine at 24–48 h: CTA, 1.06; no CTA, 1.40 (<i>P</i> =0.059); acute kidney injury in 5/157 with CTA, 7/132 without CTA (<i>P</i> =0.422)	CTA was safe, did not delay IV alteplase, and had added clinical value
Aulicky P, et al. ⁹⁷ 2010 19965846	Study type: Retrospective observational study with historical control Size: N=241	Inclusion criteria: Acute ischemic stroke patients treated with IV alteplase undergoing CTA vs. control group treated with IV alteplase without CTA Exclusion criteria: Missing creatinine levels, or no CTA performed	1° end point: Creatinine increase ≥ 44 micromol/l Results: 3% in CTA group vs. 4% in control (<i>P</i> =0.50)	Contrast agents given for CTA, performed in patients with normal and abnormal creatinine levels, neither caused renal injury nor interfered with the safety of alteplase treatment
Lima FO, et al. ⁹⁸ 2010 20044502	Study type: Prospective observational study with retrospective controls. Size: N=918	Inclusion criteria: Acute ischemic stroke patients, non- contrast vs. contrast CT exposure	1° end point: 25% increase in creatinine Results: 5% in exposed vs. 10% in non-exposed (<i>P</i> =0.003); no difference in patients with conventional angiography following CTA/CTP vs. CTA/CTP alone (5% vs. 5%, <i>P</i> =0.7)	Administration of a contrast- enhanced CT protocol involving CTA/CTP and conventional angiography in selected patients does not appear to increase the incidence of contrast-induced nephropathy

		Exclusion criteria: Dialysis-dependent patients		
Hopyan JJ, et al. ⁹⁹ 2008 18719035	Study type: Retrospective observational study Size: N=198	Inclusion criteria: Acute stroke patients undergoing contrast CT Exclusion criteria:	1° end point: Contrast-induced nephropathy within 72 h, chronic kidney disease Results: 2.9% developed contrast-induced nephropathy, 0% chronic kidney disease	Prompt CTA/CTP imaging of acute stroke, if indicated, need not be delayed in those with no history of renal impairment.
Krol AL, et al. ¹⁰⁰ 2007 <u>17600231</u>	Study type: Retrospective observational study Size: N=224	GFR<30 ml/min Inclusion criteria: Acute ischemic stroke patients undergoing CTA within 24 h of onset Exclusion criteria:	1° end point: Radiocontrast nephropathy Results: 3% developed radiocontrast nephropathy	Low incidence of radiocontrast nephropathy in acute stroke patients undergoing emergency CTA
Josephson SA,	Study type:	Short-term follow-up creatinine not available Inclusion criteria:	1° end point: Rise in creatinine ≥0.5	Contrast nephropathy incidence is
et al. ¹⁰¹ 2005 <u>15911820</u>	Retrospective observational study Size: N=1075	Patients undergoing stroke protocol CTA and CTP imaging Exclusion criteria: No pre- or post-study creatinine	Results: 3.7% without hemodialysis dependency had creatinine increase; 0.37% had contrast nephropathy	low in neurovascular patients

Abbreviations: CTA indicates computed tomography angiography; CT, computed tomography; CTP, computed tomography perfusion; GFR, glomerular filtration rate; h, hours; IV, intravenous; and min, minutes.

Literature search topics: Vessel and collateral status imaging

Table XXIII. Randomized Clinical Trials Comparing Endovascular Therapy

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Albers GW et al. 109 2018	Aim: to test the hypothesis that patients who were likely to have salvageable ischemic brain tissue identified on perfusion imaging and who undergo endovascular therapy 6-16 hours after last known to have been well will have better functional outcomes compared to subjects treated with standard medical therapy. Study type: multi-center, prospective, open-label, blinded end-point RCT Size: N=182 [Stopped early for efficacy at first interim analysis]	Inclusion criteria: Age 18-90 years; NIHSSS ≥ 6; femoral puncture within 6 -16 hours of stroke onset/last known well; pre- morbid mRS2≤2; ICA or M1 occlusion by MRA or CTA AND Target Mismatch Profile on CT perfusion or MRI (ischemic core volume is <70 ml, mismatch ratio is >1.8 and mismatch volume is >15 ml) Exclusion criteria: Many, similar to IV alteplase exclusions, including BP > 185/110; treated with tPA >4.5	Intervention: Mechanical thrombectomy with FDA- approved device (n=92) Comparator: Medical management according to 2013 AHA/ASA guidelines (n=90)	1° end point: mRS shift analysis at 90 d unadjusted OR 2.77; 95% CI, 1.63-4.70; P=0.0002 Safety end point: Mortality at 90 d: 14% vs 26%; P=0.053 sICH: 6.5% vs 4.4%; P=0.75	2° End Point mRS 0-2 at 90 d: 44.6% % vs 16.7%, Relative risk 2.67; 95% CI 1.60-4.48; P< 0.0001 Subgroup analysis by DAWN eligibility DAWN eligibile (n=112) OR 2.66; 95% CI, 1.36-5.23 Dawn ineligible (n=70) OR 2.96; 95% CI, 1.26-6.97	Stopped early at first interim analysis, may overestimate treatment effect	Expands criteria to identify patients who benefit from mechanical thrombectomy after 6 hours

		hours after time					
		last known well;					
		treated with tPA 3-4.5 hours after					
		last known well					
		AND any of the					
		following: age					
		>80, current					
		anticoagulant					
		use, history of					
		diabetes AND					
		prior stroke,					
		NIHSS >25;					
		ASPECT score					
		<6 on non-					
		contrast CT; Significant mass					
		effect with					
		midline shift;					
		acute					
		symptomatic					
		arterial					
		occlusions in					
		more than one					
		vascular territory					
DAWN	Aim: To demonstrate	Inclusion criteria:	Intervention:	Co-1° end points:	Subgroups by	•Stopped early	●The first RCT
Nogueira RG, et al. ¹⁰⁸	superior functional		Mechanical thrombectomy	90-day disability assessed	time: 90-day mRS 0-2	at first interim	evidence of a
2017	outcomes at 90 days with	Age ≥18; failed or	with specified	by utility weighted mRS: 5.5 +/- 3.8 vs 3.4 +/- 3.1,	90-uay 111K3 0-2	analysis, may overestimate	group identifiable by
29129157	stent retriever plus	contraindicated	stent retriever	Adjusted Difference 2.0;	• 6-12 hrs	treatment effect	clinical and
20120101	medical management	for IV t-PA;	(n=107)	95% CI, 1.1-3.0, posterior	55.1% vs	trodunont onoot	imaging criteria
	compared to medical	NIHSS ≥10;	,	probability of superiority	20.0%, posterior	■Mostly M1	who derive
	management alone in	Pre-stroke -mRS	Comparator:	>0.999	probability of	occlusions:	benefit from
	selected patients treated	0-1; Time last	Medical		superiority >0.99	M1 78%/78%	mechanical
	six to 24 hours after last	seen well to	management	mRS 0-2 at 90 d:		ICA 21%/19%	thrombectomy
	seen well	Randomization:	according to	49% vs 13%,	• 12-24 hrs	M2 2%/3%	after 6 hours
		6-24h; <1/3	respective	Adjusted Difference 33%,	43.1% vs 7.4%,		
		MCA territory by CT or MRI; ICA-	national guidelines	95% CI, 21%-44%, posterior probability of	posterior		
		T and/or MCA-	(n=99)	superiority >0.999	probability of superiority >0.99		
		i dilu/di MOA-	(11 00)	Superiority 70.000	Superiority ~0.99		

	Study type: multi-center, prospective, open-label, blinded end-point RCT Size: N=206 [Stopped early for efficacy at first planned interim analysis]	M1 occlusion;- Clinical Imaging Mismatch: A. ≥80 y/o, NIHSS ≥10 + core <21 mL B. <80 y/o, NIHSS ≥10 + core <31 mL C. < 80 y/o, NIHSS ≥20 + core <51 mL Exclusion criteria: Many, similar to IV alteplase exclusions, including BP > 185/110		Safety end point: Mortality at 90 d: 19% vs 18%, <i>P</i> =1.00 sICH: 6% vs 3%, <i>P</i> =0.50		•Few strokes with witnessed onset: Wake up 63%/47% Unwitnesed 27%/38% Witnessed 10%/14%	
ASTER Lapergue B et al. ¹⁷⁸ 28763550	Aim: To compare efficacy and adverse events using the contact aspiration technique vs the standard stent retriever technique as a first-line endovascular treatment among patients with acute ischemic stroke and large vessel occlusion. Study Type: multi-center, open-label, blinded endpoint RCT Size: N=381	Major Inclusion Criteria: Age > 18 years with no upper age limit; Cerebral infarction in the anterior circulation; Occlusion of the anterior circulation proven by CT angiography or MR angiography; With or without previous	Intervention: first-line contact aspiration (n = 192) Comparator: first-line stent retriever (n = 189)	1° end point: proportion of patients with mTICI 2b-3 at the end of all endovascular procedures: Contact aspiration 85.4% (n=164) vs stent retriever 83.1% (n=157) (odds ratio, 1.20; 95% CI, 0.68-2.10; <i>P</i> =.53; difference, 2.4%; 95% CI, -5.4%-9.7%). Safety end point: Symptomatic intracranial hemorrhage at 24 h:	•mRS 0-2 at 90 days, •Contact aspiration 82/181 (45.3%) vs stent retriever 91/182 (50.0%); OR 0.83 (95% CI 0.54-1.26) P= 0.38 •Difference -4.6% (95% CI, -14.7% to 6.1%)	●Primary end point was technical (successful revascularization after all interventions);tri al was not powered to detect a smaller yet potentially clinically important difference between groups.	•Among patients with ischemic stroke in the anterior circulation undergoing thrombectomy, first-line thrombectomy with contact aspiration compared with stent retriever did not result in an increased successful revascularization rate

		Intravenous thrombolysis Start of thrombectomy procedure within 6 hours of symptoms onset. Major Exclusion Criteria: Occlusion of the cervical carotid artery; mRS > 3 prior to stroke		Contact aspiration 10/188 vs (5.3%) vs stent retriever 12/188 (6.5%)		•Given its superiority design to detect a 15% difference in the primary end point, this trial was not designed to establish noninferiority.	at the end of the procedure.
THRACE Bracard S, et al. 106 2016 27567239	Aim: To determine whether mechanical thrombectomy in addition to IV thrombolysis improves clinical outcome in patients with acute ischemic stroke. Study type: RCT Size: N=414 (halted prematurely)	Inclusion criteria: Age 18–80 y; IV alteplase <4 h; ET <5 h; NIHSS 10–25; ICA, M1, superior 1/3 basilar Exclusion criteria: Cervical ICA occlusion, subocclusive stenosis, BP > 185/110 and many more	Intervention: ET (n=204) Comparator: Standard care - IV alteplase (n=208)	1° end point: mRS 0–2 at 90 d: 53% vs. 42%, P=0.028 Safety end point: • Death: 12% vs. 13%, P=0.7 • sICH: 2% vs. 2%, P=0.71	TICI 2b/3: 69% Median time to reperfusion: 250 mins (IQR 210–290)	Study halted early after MR CLEAN results reported; 3 mo mRS non-blinded; long duration of trial (5 y) with subsequent protocol evolution	For patients with acute ischemic stroke due to anterior circulation, proximal large vessel occlusion not selected on the basis of additional imaging criteria endovascular therapy with medical management showed benefit over medical therapy alone
THERAPY Mocco J, et al. ³⁵⁰ 2016 27486173	Aim: To determine if benefit from thrombectomy is exclusive to stent retrievers or also	Inclusion criteria: Age ≥18 y, ICA or MCA LVO; NIHSS ≥8, mRS	Intervention: Aspiration thrombectomy + IV alteplase (n=55)	1° end point: mRS 0–2 at 90 d: 38% vs. 30%, P=0.52 Safety end point:	• TICl 2b/3: 70% • Trend of benefit towards endovascular	Study halted early after MR CLEAN results reported	First trial evaluating primary aspiration thrombectomy

	includes primary aspiration Study type: RCT Size: N=108 (halted prematurely)	0–1, CTA thrombus ≥8 mm on thin section CT Exclusion criteria: Cervical ICA stenosis, 1/3 of MCA territory hypodensity, and mRS >1 pre-stroke, and many more	Comparator: Standard care - IV alteplase (n=53)	• Death: 12% vs. 23.9%, P=0.18 • sICH: 9.3% vs. 9.7%, P=1.0	therapy in pre- specified secondary outcomes	Not powered to meet primary end point Stent retriever rescue utilized in 13% of patients	vs. medical management in the treatment of anterior circulation acute ischemic stroke from large vessel occlusion
MR CLEAN Berkhemer OA, et al. ¹⁰⁷ 2015 25517348	Aim: To determine whether IAT plus usual care would be more effective than usual care alone in patients with a proximal arterial occlusion in the anterior cerebral circulation that could be treated intraarterially within 6 h after symptom onset Study type: RCT Size: N=500	Inclusion criteria: Age>18 y, 6 h to IAT, anterior circulation LVO, NIHSS>2 Exclusion criteria: Exclusion of ICA dissection or occlusion at discretion of treating physician, BP > 185/110, and many more	Intervention: ET (n=233) Comparator: Standard care - IV alteplase (n=267)	1° end point: mRS shift analysis at 90 d, adjusted OR, 1.67; 95% CI, 1.21–2.3; mRS of 0–2 in 32.6% vs. 19.1% Safety end point: • Death: 21% vs. 22% (<i>P</i> =0.75) • sICH: 7.7% vs. 6.4% (<i>P</i> =0.24)	• TICI 2b/3: 59% • Median time to reperfusion: 332 min (IQR, 279– 394)	Relatively low reperfusion rates Low percentage of patients with functional neurological outcome	First randomized trial to demonstrate benefit of current ET with medical management over medical management alone for anterior circulation acute ischemic stroke Broad inclusion criteria
EXTEND-IA Campbell BC, et al. ¹⁰⁵ 2015 25671797	Aim: To test whether more advanced imaging selection, recently developed devices, and earlier intervention improve outcomes Study type: RCT	Inclusion criteria: Age ≥18 y, 6 h to groin, complete in 8 h, LVO anterior circulation, mRS 0–1, mismatch on automated	Intervention: ET (n=35) Comparator: Standard care - IV alteplase (n=35)	1° end point: • Median reperfusion at 24 h: 100% vs. 37%, adjusted OR, 4.7 (95% CI, 2.5–9) • Decrease in NIHSS of 8 points or NIHSS 0–1 at 3 d: 80% vs. 37%, adjusted OR, 6 (95% CI, 2–18)	 TICI 2b/3: 86% Median time to reperfusion: 248 min (IQR, 204–277) 	Limited ability to generalize results given homogenous study population with narrow selection parameters, provision of care	Substantial benefit to endovascular therapy in patients with anterior circulation large vessel occlusion ischemic stroke,

	Size: N=70 (halted prematurely)	perfusion imaging (Tmax threshold 6 s, CBF threshold 30%) Exclusion criteria: Carotid dissection, >1/3 MCA hypodensity, BP > 185/110, and many more		Safety end point: • Death: 9% vs. 20%, adjusted OR, 0.45 (95% CI, 0.1–2.1) • sICH: 0 vs. 6%		at tertiary care facilities only and early timeframe presentation and treatment • Study halted early after MR CLEAN results reported • Small patient numbers	small ischemic cores randomized after IV alteplase and treated <6 h from onset of symptoms
ESCAPE Goyal M, et al. ¹⁰⁴ 2015 25671798	Aim: To test whether patients with acute ischemic stroke, who were selected on the basis of results of CT and CTA, would benefit from rapid endovascular treatment involving contemporary endovascular techniques Study type: RCT Size: N=316 (halted prematurely)	Inclusion criteria: Age>18 y, 12 h to randomization, ICA/MCA LVO, NIHSS>5, Barthel score≥90, ASPECTS>6, CT collateral score good or intermediate on multiphase CTA Exclusion criteria: ASPECTS≤6, and many more	Intervention: ET (n=150) Comparator: Standard care ± IV alteplase (n=165)	1° end point: mRS shift analysis at 90 d; adjusted OR, 3.1 (95% CI, 2–4.7) Safety end point: • Death: 10.4% vs. 19%; adjusted rate ratio, 0.5 (95% CI, 0.3–0.8) • sICH: 3.6% vs. 2.7%; adjusted rate ratio, 1.2 (95% CI, 0.3–4.6)	• TICI 2b/3: 72% • Median time to reperfusion: 241 min (IQR, 176–359) • Median time CT to groin puncture: 51 min (IQR, 39–68) • Mortality: 10.4% endovascular vs. 19% medical (P=0.04)	Screening logs not required Small numbers of patients in 6- to 12-h treatment window Study halted early after MR CLEAN published	Emphasized process improvement to maximize treatment effect in patients selected based on collateral assessment of core and penumbral tissue Only recent trial to show mortality benefit from endovascular therapy
REVASCAT Jovin TG, et al. ¹⁰² 2015 <u>25882510</u>	Aim: To assess the safety and efficacy of thrombectomy for the treatment of acute ischemic stroke in a trial embedded within a population-based acute ischemic stroke reperfusion registry	Inclusion criteria: Age 18–80 (85) y, 8 h to groin, LVO ICA/M1, NIHSS ≥6, mRS 0–1 Exclusion criteria:	Intervention: ET (n=103) Comparator: Standard care - IV alteplase (n=103)	1° end point: mRS shift analysis at 90 d (mRS 5 and 6 combined), adjusted OR, 1.7 (95% CI, 1.05– 2.8) Safety end point:	 TICI 2b/3: 66% Median time to reperfusion: 355 min (IQR, 269–430) 	 Study halted early after MR CLEAN results reported Small numbers of patients in 6- to 8-h treatment window 	For patients with acute ischemic stroke due to anterior circulation, proximal large vessel occlusion without large core on CT

	Study type: RCT Size: N=206 (halted prematurely)	ASPECTS<7 on CT or <6 on MRI, BP > 185/110, and many more		 Death: 18% vs. 16%; adjusted risk ratio, 1.2 (95% CI, 0.6–2.2) sICH: 2% vs. 2%; adjusted risk ratio, 1.0 (95% CI, 0.1–7) 		Screening logs not available	imaging and treated within 8 h of onset, endovascular therapy with medical management showed benefit over medical therapy alone
SWIFT-PRIME Saver JL, et al. ¹⁰³ 2015 <u>25882376</u>	Aim: To establish the efficacy and safety of rapid neurovascular thrombectomy with the stent retriever in conjunction with IV alteplase vs. IV alteplase alone in patients with acute ischemic stroke Study type: RCT Size: N=196 (halted prematurely)	Inclusion criteria: Age 18–80 y, 6 h to groin puncture, ICA/M1 LVO, target mismatch profile on imaging with RAPID or local perfusion software, NIHSS 8–29, mRS 0–1 Exclusion criteria: Inability to receive IV alteplase, cervical dissection or complete occlusion requiring stenting, CT ASPECTS<6, BP > 185/110 and many more	Intervention: ET (n=98) Comparator: Standard care - IV alteplase (n=98)	1° end point: mRS shift analysis at 90 d (mRS 5 and 6 combined), P<0.001 Safety end point: • Death: 9% vs. 12%, adjusted rate ratio: 0.74 (95% CI, 0.33–1.68) • sICH: 0 vs. 3%	• Functional independence at 90 d: 60% endovascular vs. 35% medical (P<0.001) • TICI 2b/3: 88% • Median time to reperfusion: 332 min (IQR, 279–394) • Reperfusion at 24 h: 83% endovascular vs. 40% medical management (P<0.001)	Limited ability to generalize results given homogenous study population with narrow selection parameters, provision of care at tertiary care facilities only and workflow and process development as part of protocol Study halted early after MR CLEAN results reported CT or MRI mismatch for selection of first 71 patients, then only ASPECTS≥6 for the next 125	Substantial benefit to endovascular therapy in patients with anterior circulation LVO ischemic stroke; small ischemic cores randomized after IV alteplase and treated <6 h from onset of symptoms

IMS-III Broderick JP, et al. ³⁵¹ 2013 23390923	Aim: To test the approach of IV alteplase followed by protocol-approved endovascular treatment, as compared with standard IV alteplase Study type: RCT Size: N=656	Inclusion criteria: Age18– 82 y; 3 h to IV alteplase; 5 h to ET; NIHSS≥10 or 8–9 with occlusion; mRS 0–2 Exclusion criteria: Inability to receive alteplase, hypodensity >1/3 of MCA territory, and many more	Intervention: IAT (n=434) Comparator: Standard care - IV alteplase (n=222)	1° end point: mRS 0–2 at 90 d: 40.8% vs. 38.7%; adjusted difference: 1.5% (95% CI, -6 to 9) Safety end point: • Death: 19.1% vs. 21.6% (<i>P</i> =0.52) • sICH: 6.2% vs. 5.9% (<i>P</i> =0.83)	• TICl 2b/3: 41% • Mean time to reperfusion: 325±52 min	Limited use of newer-generation, more efficient thrombectomy devices Evolving protocol during the duration of the study (addition of CTA, newer thrombectomy devices) Reduced dose of IV alteplase (two-thirds) for endovascular patients	Trial halted due to futility; no outcome benefit to endovascular therapy with medical therapy over medical therapy alone
SYNTHESIS Expansion Ciccone A, et al. ³⁵² 2013 23387822	Aim: To investigate whether endovascular treatment, including the options of a mechanical device and intraarterial alteplase, is more effective than the currently available treatment with IV alteplase Study type: RCT Size: N=362	Inclusion criteria: Age 18–80 y; 6 h to ET, NIHSS≤25, mRS 0–1 Exclusion criteria: Hemorrhage on initial imaging	Intervention: ET with IA drug, device, both (n=181) Comparator: IV alteplase (n=181)	1° end point: mRS 0–1 at 3 mo: 39% vs. 34.8%, adjusted OR, 0.71; 95% CI, 0.44–1.14 Safety end point: • Death: 14.4% vs. 9.9% (<i>P</i> =0.22) • sICH: 6% vs. 6% (<i>P</i> =0.53)	No secondary outcome differences between groups	Limited use of newer-generation, more efficient thrombectomy devices No reperfusion rates reported Vessel occlusion not a prerequisite for treatment selection (3/181 endovascular pts not treated because of no occlusion)	No benefit to endovascular therapy with medical management over medical therapy alone in a broadly selected patient group with anterior circulation acute ischemic stroke

MR RESCUE Kidwell CS, et al. ³⁵³ 2013 <u>23394476</u>	Aim: To determine whether brain imaging can identify patients who are most likely to benefit from therapies for acute ischemic stroke and whether endovascular thrombectomy improves clinical outcomes Study type: RCT	Inclusion criteria: Anterior circulation LVO <8 h; favorable penumbral multimodal imaging for stratification (favorable defined as core <90 cc, or <70%	Intervention: ET (n=64) Comparator: Standard care ± IV alteplase) (n=54)	1° end point: Mean mRS at 90 d: 3.9 vs. 3.9, P=0.99 Safety end point: • Death: 19% vs. 24% (P=0.75) • sICH: 5% vs. 4% (P=0.24)	 TICI 2b/3: 27% No difference in infarct growth or final infarct volume between groups No benefit in favorable penumbra group 	No use of newer-generation, more efficient thrombectomy devices Long trial duration (8 y) Relative delays to groin puncture from	Trial showed no benefit from endovascular therapy with medical management compared to medical management alone after treatment
	Size: N=118	of volume of tissue at risk) Exclusion criteria: Cervical artery occlusion, severe stenosis or dissection, inability to process imaging by study software, and				imaging acquisition	selection based on penumbral imaging
TREVO 2 Nogueira RG, et al. ³⁵⁴ 2012 22932714	Aim: To compare efficacy and safety of the Trevo Retriever with its US FDA-cleared predecessor, the Merci Retriever Study type: RCT Size: N=178	many more Inclusion criteria: Age 18–85 y, anterior circulation LVO <8 h, NIHSS 8– 29 Exclusion criteria: Exclusions for IV alteplase, excessive tortuosity, proximal cervical	Intervention: Trevo thrombectomy (n=88) Comparator: Merci thrombectomy (n=90)	1° end point: TICI scale 2/3: 86% vs. 60%; OR, 4.22; 95% CI, 1.92–9.69 Safety end point: • Death 33% vs. 24% (<i>P</i> =0.18) • sICH 7% vs. 9% (<i>P</i> =0.78)	mRS 0–2 at 90 d: 40% vs. 22%, OR, 2.39; 95% CI, 1.16–4.95	Did not compare to aspiration systems or other stent retrievers No tandem carotid occlusions included	Demonstrated the superiority of Trevo stent retrievers over early-generation devices for thrombectomy

		stenosis, >1/3 MCA hypodensity, and many more					
SWIFT Saver JL, et al. ³⁵⁵ 2012 <u>22932715</u>	Aim: To compare the efficacy and safety of Solitaire with the standard, predicate mechanical thrombectomy device, the Merci Retrieval System Study type: RCT Size: N=113	Inclusion criteria: Age 22–85 y, anterior circulation LVO <8 h, NIHSS 8– 30, ineligible for/failure to respond to IV alteplase Exclusion criteria: Infarct >1/3 of MCA territory, and many more	Intervention: Solitaire thrombectomy (n=58) Comparator: Merci thrombectomy (n=55)	1° end point: TIMI scale 2/3 without sICH: 61% vs. 24%; OR, 4.87; 95% CI, 2.14–11.1 Safety end point: • Death: 17% vs. 38% (P=0.02) • sICH: 2% vs. 11% (P=0.057)	mRS 0-2 at 90 d: 58% vs. 33%; OR, 2.78; 95% CI, 1.25-6.22	Did not compare to aspiration systems or other stent retrievers Halted early, which limited precision of treatment effect estimates No tandem carotid occlusions included	First acute ischemic stroke trial to randomize one endovascular technique for reperfusion against another; demonstrated the superiority of Solitaire stent retriever over early generation devices for thrombectomy
MELT Ogawa A, et al. ³⁵⁶ 2007 <u>17702958</u>	Aim: To determine the safety and clinical efficacy of intraarterial infusion of urokinase in patients with acute ischemic stroke within 6 h of onset Study type: RCT Size: N=114	Inclusion criteria: 20–75, NIHSS ≥5 <23, mRS 0–2, initiation of IAT within 6 h Exclusion criteria: High intracranial hemorrhage risk, NIHSS>22, and many more	Intervention: IAT urokinase (n=57) Comparator: Control (n=57)	1° end point: mRS 0–2 at 90 d: 49.1% vs. 39%; OR, 1.54; 95% CI, 0.73–3.23; P=0.345 Safety end point: • Death: 5.3% vs. 3.5% (P=1.0) • ICH <24 h: 9% vs. 2% (P=0.21)	TIMI 2/3: 73% (extrapolated mTICI 2b/3: 53%)	 Comparator group not contemporary medical acute ischemic stroke therapy Study halted early after IV alteplase approved in Japan Not powered to meet primary end point 	Multicenter randomized trial assessing endovascular thrombolysis terminated early and therefore unable to meet primary end point
PROACT II Furlan A, et al. ³⁵⁷ 1999 <u>10591382</u>	Aim: To determine efficacy and safety of IA pro-urokinase in acute ischemic stroke <6 h in MCA occlusion	Inclusion criteria: 18–85 y; NIHSS≥4–30 (except isolated	Intervention: 9 mg IA pro- urokinase + heparin (n=121) Comparator:	1° end point: mRS 0–2 at 90 d: 40% vs. 25%, P=0.04 Safety end point:	TIMI 2/3: 66% in pro-urokinase group vs. 18% in controls on 2 h	Comparator group not contemporary medical acute	Original multicenter randomized trial showing clinical efficacy of IA

	aphasia,	Heparin (n=59)	• Death: 25% vs. 27%	angiogram	ischemic stroke	intervention
Study type: RCT	hemianopia)		(P=0.8)	(<i>P</i> <0.001)	therapy	(thrombolysis) in
			• sICH: 10% vs. 2%			patients with
Size: N=180	Exclusion		(P=0.06)			acute MCA
	criteria: High					ischemic stroke
	intracranial					<6 h duration
	hemorrhage					
	risk, NIHSS>30,					
	and many more					

Abbreviations: ASPECTS indicates Alberta Stroke Program Early Computed Tomography Score; CBF, cerebral blood flow; CI, confidence interval; CT, computed tomography; CTA, computed tomographic angiography; ET, endovascular therapy; h, hours; IA, intra-arterial; IAT, intra-arterial therapy; ICA, internal carotid artery; ICH, intracerebral hemorrhage; IQR, interquartile range; IV, intravenous; LVO, large vessel occlusion; MCA, middle cerebral artery; MRI, magnetic resonance imaging; mRS, modified Rankin Score; mTICI, modified thrombolysis in cerebral infarction; N/A, not available; NIHSS, National Institute of Health Stroke Scale; OR, odds ratio; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; TICI, thrombolysis in cerebral infarction; TIMI, thrombolysis in myocardial infarction; Tmax, time-to-maximum; US FDA, United States Food and Drug Administration; y, years.

Literature search topic: Hypotension AND Endovascular interventions

Table XXIV. Nonrandomized Trials, Observational Studies, and/or Registries of Collateral Status

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
MR CLEAN Berkhemer OA, et al. ¹¹⁰ 2016 26903582	Study type: Secondary analysis of CTA collateral status from MR CLEAN RCT	Inclusion criteria: MR CLEAN patients with CTA and ICA, M1, or M2 occlusion	1° end point: CTA collateral status (4-point scale ranging from 0 for absent collaterals and 3 for good collaterals with 100% filling of the occluded territory) and adjusted common OR for shift in mRS	The benefit of intra-arterial therapy was greatest in patients with good collaterals; treatment benefit appeared less and may be absent in patients with absent or poor
	Size : N=493	Exclusion criteria: N/A	Results: Collateral status (CTA) modified treatment effect (<i>P</i> =0.038); common OR: grade 3, 3.2 (1.7–6.2); grade 2, 1.6 (1.0–2.7); grade 1, 1.2 (0.7-2.3); grade 0, 1.0 (0.1–8.7)	collaterals
IMS III Menon BK, et al. ¹¹¹ 2015 25791716	Study type: Secondary analysis of CTA collateral status from IMS III RCT Size: N=185	Inclusion criteria: IMS III patients with CTA and M1/ICA occlusion Exclusion criteria: Incomplete CTA coverage, unavailable scans, or poor image quality	1° end point: CTA collateral status Results: Collateral status was a significant predictor of all clinical outcomes (<i>P</i> <0.05); maximal benefit with intermediate collaterals, some benefit with good collaterals; modification of treatment effect was not observed (limited power due to small number of patients noted)	Baseline CTA collaterals appear to be a robust determinant of final clinical outcome

Abbreviations: CTA indicates computed tomography angiography; ICA internal carotid artery; M1/ICA, middle cerebral artery segment; OR, odds ratio; and RCT, randomized clinical trial.

Literature search topic: Vessel and collateral status imaging

Table XXV. Nonrandomized Trials, Observational Studies, and/or Registries of Chest Radiography in Patients with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Saber H, et al. ¹¹² 2016 27412145	Study type: Secondary analysis of data from IMS-III Size: N=615	Inclusion criteria: IMS-III who had data recorded on pefromance of CXR on the initial evaluation Exclusion criteria: IMS-III, did not originally present to facility providing IV alteplase	1° end point: Door-to-needle time Results: Patients with CXR done before treatment (n=243) had longer mean door-to-needle times than those who did not (n=372); 75.8 vs 58.3 minutes, <i>P</i> =0.0001. 2° end point: Cardiopulmonary adverse events in the first 24 hours of admission, endotracheal intubation in the first 7 hours, and in-hospital mortality were not different between the 2 groups.	The benefit of intra-arterial therapy was greatest in patients with good collaterals; treatment benefit appeared less and may be absent in patients with absent or poor collaterals

Abbreviations: CXR indicates chest X-ray

Table XXVI. Randomized Clinical Trials Comparing Supplemental Oxygen

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SO₂S Roffe, et al. ¹¹³ 2017 <u>28973619</u>	Aim: to determine whether low-dose oxygen therapy during the first 3 days after an acute stroke improves outcome compared with usual care	Inclusion criteria: clinical diagnosis of acute stroke within 24 hours of hospital admission	Intervention: O ₂ at 3 L/min if baseline saturation was 93% or below or at of 2 L/min if baseline saturation was	1° end point: Ordinal mRS at 90 d was similar among groups: unadjusted OR for a better outcome was 0.97; 95% CI,	No subgroup could be identified that benefited from oxygen	• Includes some participants with ICH (7.3%), stroke mimics (3.6%) or transient	Among nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation

	(oxygen only when needed) Study type: RCT with blinded 1° end point assessment Size: N=8003	Exclusion criteria: Indications or contraindiactions for O ₂	greater than 93%. (1) continuous oxygen for 72 h (n=2668); (2) nocturnal oxygen only for 3 nights (n=2667) Comparator: No O ₂ (n=2668)	0.89- 1.05; P = .47; for oxygen vs control, and 1.03; 95% CI, 0.93- 1.13; P = .61; for continuous vs nocturnal oxygen. Safety end point: No oxygen related adverse events		ischemic attacks (2.1%) •1° end point assessed by postal questionnaire and supported by telephone interviews with nonresponders	did not reduce death or disability at 3 months. These findings do not support low- dose oxygen in this setting.
SOS Ali K, et al. ³⁵⁸ 2014 <u>23755093</u>	Aim: Supplemental O ₂ to prevent hypoxia Study type: Randomized singleblind pilot study Size: N=289	Inclusion criteria: Acute stroke Exclusion criteria: Indications for O2	Intervention: 2 L O ₂ by NC if baseline O ₂ >93% or 3 L NC if baseline O ₂ <93% for 72 h (n=148) Comparator: No O ₂ (n=141)	1° end point: Ordinal mRS at 6 mo was similar among groups (1.04 [0.67–1.60]; P=0.86) Safety end point: N/A	Barthel Index at 6 mo trended worse in patients who received O ₂ (1.50 [0.94– 2.37]; P=0.09)	 Includes some participantswith ICH SaO₂ was not continuously monitored Larger study is underway 	No clear benefit to supplemental O ₂ , and maybe some harm
SPOTRIAS Singhal AB, et al. ³⁵⁹ 2013 Link to article	Aim: Benefit of O ₂ Study type: RCT Size: N=85	Inclusion criteria: AIS <9 h and NIHSS >4 Exclusion criteria: Use of alteplase; need for >3 L/min oxygen to maintain SaO ₂ >92%; NYHA Class III heart failure	Intervention: Supplemental O2 (n=43) Comparator: Room air (n=42)	1° end point: Change in NIHSS at 0–4 h: no difference Safety end point: 0–24 h change in NIHSS: no difference between groups	Percent lesion growth at 3 mo Tissue reperfusion and % mismatch lost were all similar SAEs, brain hemorrhage and brain edema were all similar	Imbalance in stroke severity in treated groups; no difference if controlled for comorbidities	Study stopped early by DSMB and published only as an abstract

SOS pilot study Roffe C, et al. ³⁶⁰ 2011 <u>21625533</u>	Aim: Effect of oxygen within 24 h on 7-day outcomes Study type: Single-blind RCT Size: N=148 vs. N=141	Inclusion criteria: Acute stroke admitted within the preceding 24 h Exclusion criteria: Recognized need for oxygen or contraindication for oxygen	Intervention: Oxygen supplementation via NC for 72 h (n=148) Comparator: Room air (n=141)	1° end point: Similar NIHSS at 1 wk; oxygentreated patients had more improvement in NIHSS at 7 d; more oxygentreated patients had at least a 4- point improvement in NIHSS (OR, 2.9; 95% CI, 1.59–5.4) Safety end point: N/A	There were no differences in physiologic parameters (BP and HR) between groups	Supplemental oxygen did not prevent desaturations	Patients with supplemental oxygen appeared to have greater improvement in NIHSS over the first wk, but the absolute NIHSS did not differ between groups
Roffe C, et al. ³⁶¹ 2010 20123224	Aim: Study the effects of supplemental oxygen at night on oxygen saturation Study type: RCT Size: N=63 (59 with actual stroke)	Inclusion criteria: RX within 72 h Exclusion criteria: Definite need for oxygen	Intervention: 2 L/min oxygen at night (n=30) Comparator: Room air (n=33)	1° end point: Nocturnal oxygen supplementation increased the mean nocturnal oxygen by 2.5% and decreased desaturations by 1.3% Safety end point: N/A	There were no differences in physiologic parameters (BP and HR) between groups	Supplemental oxygen did not prevent desaturations	Supplemental oxygen prevents desaturations, but there is no clinical correlate in this study
Singhal AB, et al. ³⁶² 2005 <u>15761201</u>	Aim: Evaluate high flow O ₂ in those with acute stroke with diffusion perfusion mismatch Study type: RCT Size: N=16	Inclusion criteria: RX within 12 h; diffusion perfusion mismatch Exclusion criteria: COPD,	Intervention: High-flow O ₂ by face mask (n=9) Comparator: Room air (n=7)	1° end point: No difference in stroke scale scores at 3 mo; transient improvements in MRI in hyperoxiatreated patients	24-h MRIs showed petechial hemorrhages in 50% of hyperoxia- treated patients vs.	Very small pilot study	Study too small to say anything

		need for >3 L/min to maintain SaO ₂ >95%, medical instability, inability to obtain MRI		Safety end point: N/A	17% of controls (NS)		
Ronning OM, et al. ³⁶³ 1999 10512903	Aim: Supplemental oxygen (100%) vs. no supplemental oxygen Study type: Quasirandomized RCT Size: N=550	Inclusion criteria: RX within 24 h of stroke onset Exclusion criteria: Age<60 y	Intervention: 3 L oxygen via NC for 24 h (n=292) Comparator: No supplemental oxygen (or NC) (n=258)	1° end point: 1- y survival: no differences between groups Scandinavian stroke scale and BI at 7 mo: no difference between groups Safety end point: N/A	• For those with minor strokes, oxygen use was associated with decreased 1-y survival (0.45 [0.23–0.90]; P=0.02) • Trend towards worse BI at 7 mo (P=0.07)	Not all patients (11%) allocated to treatment received oxygen for the full 24 h, implying that oxygen therapy may be even worse than the data suggest	No clear benefit to supplemental oxygen, and maybe some harm

Abbreviations: AIS, indicates acute ischemic stroke; BP, blood pressure; BI, Barthel Index; COPD, chronic obstructive pulmonary disease; DSMB, data safety and monitoring board; h, hours; HR, heart rate; ICH, intracerebral hemorrhage; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; N/A, not available; NC, nasal cannula; NIHSS, National Institutes of Health Stroke Scale; NS, not significant; NYHA, New York Heart Association; OR, odds ratio; RCT, randomized clinical trial; RX, treatment; SAE, serious adverse event; SaO₂, oxygen saturation; and y, year.

Literature search topic: Oxygen supplementation

Table XXVII. Nonrandomized Trials, Observational Studies, and/or Registries of Hyperbaric Oxygen

Study	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Acronym;	Study Size		(P values; OR or RR;	Comment(s)
Author;			& 95% CI)	
Year Published				
Heyboer M, et	Study type: Review	Inclusion criteria:	1° endpoint: Side-effects	HBO therapy is associated with a
al. ¹¹⁵	of side effects of	Review of HBO		number of potential side effects
2017	HBO	studies	Results:	Review; no primary data
<u>28616361</u>				, ,

Heyboer M, et al. ¹¹⁶ 2014 25558546	Study type: retrospective chart review Size: 931 patients undergoing 23,328 treatments	Inclusion criteria: N/A Inclusion criteria: any patient undergoing HBO treatment at a university hospital and an outpatient center for any indication Exclusion criteria: N/A	Middle ear barotrauma is the most common complication – reported rates vary drastically but a recent review suggests it may be as common as 43%. Other side effects include sinus/paranasal barotrauma, dental barotrauma, pulmonary barotrauma, increased BP, claustrophobia and seizures. 1º endpoint: frequency of seizures Results: Seizures occurred at a rate of 1/2121 treatments (5/10,000) and were more common at higher pressures – 0/16,430 at 2.0 atm, 1/669 at 2.4/2.5 atm and 1/197 at 2.8 atm (P<0.001)	HBO therapy is associated with an increased risk of seizures, with the risk being greater at higher pressures Retrospective chart review in a cohort of patients undergoing HBO therapy, but not for stroke
Bennett MH, et al. ¹¹⁴ 2014 25387992	Study type: Cochrane review of RCTs Size: 11 RCTs with 705 patients	Inclusion criteria: Pooled analysis of HBO RTCs for AIS Exclusion criteria: N/A	1° endpoint: death at 3-6 months Results: • No difference in case fatalities at 6 mo for those receiving HBO compared with controls (RR, 0.97; 95% CI, 0.34-2.75; P=0.96) • 4/14 measures of disability/functional outcome showed some benefit to HBO therapy	 There is no evidence that HBO therapy improves outcome in AIS, although the possibility of clinical benefit has not been excluded. Methodologies of trials differed making pooled analysis of outcomes other than fatality difficult.

Abbreviations: CI indicates confidence interval; HBO, hyperbaric oxygen; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk. Literature search topic: HBO

Table XXVIII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypotension and Hypovolemia

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Visvanathan A, et al. ¹²⁵ 2015 26329401	Study type: Cochrane systematic review Size: N=2351 participants (12 studies)	Inclusion criteria: Randomized trials of parenteral fluid regimens in adults with ischemic or hemorrhagic stroke within 7 d of onset that reported death or dependence Exclusion criteria: Quasi-randomized, non-randomized, and cross-over trials	Results: Odds of death or dependence were similar (OR, 0.97; 95% CI, 0.79–1.21) Pulmonary edema was more common in participants allocated to colloids (OR, 2.34; 95% CI, 1.28–4.29) and a higher risk of cerebral edema (OR, 0.20; 95% CI, 0.02–1.74) and pneumonia (OR, 0.58; 95% CI, 0.17–2.01) was observed with crystalloids Clinically important benefits or harms could not be excluded There was no evidence to guide volume, duration, or mode of parenteral fluid delivery	 No evidence that colloids were associated with lower odds of death or dependence in the medium term after stroke compared with crystalloids No evidence to guide the best volume, duration, or mode of parenteral fluid delivery for people with acute stroke
Wohlfahrt P, et al. ¹¹⁷ 2015 25380168	Study type: Consecutive patients, Observational Size: N=532	Inclusion criteria: Consecutive hospitalized patients <81 y with symptoms more than 24 h (unless thrombolytic therapy was applied) Only patients with CT or MRI excluding hemorrhagic stroke Exclusion criteria: Admission and discharge BP value unavailable	1° end point: Total mortality, median follow-up was 66 wk Results: • Admission MBP<100 mmHg had a higher risk of death than those with MBP between 100–110 and 110–121 mmHg, whereas the risk of mortality did not differ from the group with admission MBP>122 mmHg • Similarly, patients with discharge SBP<120 mmHg had an increased risk of death as compared to groups with SBP between 120–130 and 130–141 mmHg, whereas the risk of death was similar to that with discharge SBP>141 mmHg	Among patients hospitalized for their first-ever ischemic stroke, the risk of all-cause death is significantly increased in those with admission MBP<100 mmHg and discharge SBP<120 mmHg, even after adjustments for other confounders
Muscari A, et al. ¹²⁴ 2013 23561704	Study type: Observational Size: N=252	Inclusion criteria: Patients with ischemic stroke admitted to the stroke	1° end point: Improvement defined as a difference between initial and final assessment (ΔNIHSS) ≥2 points	Lower blood pressure associated with early neurological improvement

		unit within 24 h from onset of symptoms Exclusion criteria: Undergoing systemic thrombolysis	Results: Among 27 patients with average SBP≤118 mmHg, 21 improved (77.8%) vs. 100 of 225 patients with average SBP>118 mmHg (44.4%; Chi-square,10.7; P=0·001) • With respect to the patients with average SBP>118 mmHg, those with average SBP≤118 mmHg had an OR of improving of 4.29 (95% CI, 1.60–1.50; P=0.004), after adjustment for the three other variables independently associated with improvement	
al. ¹²³ 2015 25908462 g	Study type: Subsequent analysis of 2 RCTs of blood pressure management in acute schemic stroke Size: N=706 (COSSACS) + N=171 (CHHIPS)	Inclusion criteria: CHHIPS: symptom onset <36 h and SBP>160 mmHg COSSACS: patients with acute stroke, recruited <48 h of symptom onset Exclusion criteria: CHHIPS: SBP>200 mmHg or DBP>120 mmHg in association with ICH, impaired conscious level, and premorbid dependency (mRS>3) COSSACS: same as those in CHHIPS (listed above), with the addition of: dysphagia; definite indication or contraindication to continue/discontinue antihypertensive therapy	1° end point: Death or major disability (defined as mRS>3 at 2 wk) Results: Neither maximum or minimum SBP or DBP associated with death or major disability (defined as mRS>3 at 2 wk)	Minimum BP not associated with 2-week outcome
Okamura K, et al. ¹¹⁹	Study type: Registry	Inclusion criteria: Brain infarction	1° end point: Death within 30 d	Lower and higher BP after brain infarction were predictors for poor
-	Size: N=1004	admitted on the first	Results:	early prognosis

		day and who had undergone CT Exclusion criteria: No available data on SBP, DBP, and level of consciousness on admission	A U-shaped relationship was observed between admission BP levels (both SBP and DBP) and mortality rate within 30 d Patients at the lowest BP level (SBP<130 mmHg or DBP<70 mmHg) had the poorest outcomes	
Stead LG, et al. 120 2005 16247043	Study type: Consecutive patients, observational Size: N=357	Inclusion criteria: Presented to the ED with acute ischemic stroke (ICD-CM codes 433 through 437) between mid- December 2001 and March 2004 within 24 h of symptom onset, for whom the initial BP was available Exclusion criteria: Limited to the 381 patients who resided in the local county or the surrounding nine- county area	Results: • Patients with DBP<70 mmHg were significantly more likely to die than those with DBP in the 70–105 mmHg range even after adjusting for age, gender, and NIHSS (RR, 1.8; 95% CI, 1.1–3.1; <i>P</i> =0.024) • Patients with SBP <155 mmHg were significantly more likely to die within 90 d when compared to those with SBP in the range of 156–220 mmHg, even after adjusting for age, gender, and NIHSS score (RR, 1.8; 95% CI, 1.1–3.0; <i>P</i> =0.022) • Patients with MA <i>P</i> <100 mmHg were more likely to die than patients with a MAP in the range of 101–140 mmHg, even after adjusting for age, sex, and NIHSS score (RR, 1.8; 95% CI, 1.1–2.9; <i>P</i> =0.027)	Early hypotension (as measured by DBP, SBP, and MAP) is associated with increased early mortality risk
Castillo J, et al. ¹²¹ 2004 14726553	Study type: Consecutive patients, observational Size: N=300/258/258 (numbers evaluated for each of the primary end points)	Inclusion criteria: Patients admitted consecutively for a first episode of hemispheric ischemic stroke within 24 h Exclusion criteria: Patients without a confirmed diagnosis of cerebral infarct (n=13), treated in an acute clinical trial (n=32), or with	1° end point: • Early neurological deterioration • Neurological deficit at 3 mo • Mortality at 90 d Results: A U-shaped effect was observed: for every 10 mmHg ≤180 mmHg of SBP, the risk of early neurological deterioration, poor outcome, and mortality increased by 6%, 25%, and 7%, respectively, whereas for every 10 mmHg >180 mmHg, the risk of early neurological deterioration increased by 40% and the risk of poor outcome increased by 23%, with no effect on mortality	Both high and low SBP or DBP values within the first 24 h after stroke onset are associated with a poor prognosis in terms of early neurological deterioration, neurological deficit at 90 d, and infarct volume This effect is independent of prognostic factors such as stroke severity, body temperature, serum glucose, and stroke subtype

Vemmos KN, et al. ¹¹⁸ 2004 14746563	Study type: Consecutive patients, observational Size: N=930	vasoactive amines (n=3) were excluded Inclusion criteria: First-ever stroke patients admitted to hospital between July 1992 and November	1° end point: Mortality at 1 mo and 12 mo Results: Early (16.6%) and late (29.0%) mortality rate in patients with acute ischemic stroke showed the characteristic U-shaped distribution relative to the registered admission BP	Acute ischemic stroke patients with high and low admission BP values have a higher early and late mortality
		Exclusion criteria: Patients with transient ischemic attack, age <18 y, recurrent stroke and subarachnoid hemorrhage	value; inflection at SBP 121–140, DBP 81–90	
Leonardi-Bee J, et al. ¹²² 2002 <u>11988609</u>	Study type: Subsequent analysis of RCT of heparin and aspirin in acute ischemic stroke Size: N=17,398	Inclusion criteria: Patients with CT- confirmed ischemic stroke from the International Stroke Trial (IST) Exclusion criteria: Nonstroke, hemorrhagic stroke, or stroke of unknown type (i.e., no CT scan or postmortem was performed)	1° end points: Death within 14 d and death or dependency at 6 mo Results: • A U-shaped relationship was found between baseline SBP and both primary outcomes of death within 14 d and death or dependency at 6 mo • The lowest frequency of poor outcome occurred in patients with a baseline SBP of 140–179 mmHg, with the nadir around 150 mmHg • Patients with an SBP<150 mmHg had, for every 10-mmHg fall in blood pressure, an increased risk of early death of 17.9% (<i>P</i> <0.0001) and an increased risk of death or dependency at 6 mo of 3.6% (<i>P</i> =0.044) • Deaths resulting from coronary heart disease within 14 d were independently associated with low SBP (<i>P</i> =0.002)	Both high blood pressure and low blood pressure were independent prognostic factors for poor outcome, relationships that appear to be mediated in part by increased rates of early recurrence and death resulting from presumed cerebral edema in patients with high blood pressure and increased coronary heart disease events in those with low blood pressure

Abbreviations: BP indicates blood pressure; CHHIPS, Controlling Hypertension and Hypotension Immediately Post-stroke; CI, confidence interval; COSSACS, Continue or Stop Post-stroke Antihypertensives Collaborative Study; CT, computed tomography; DBP, diastolic blood pressure; ED, emergency department; h, hours; HR, hazard ratio; ICD-CM, International Classification of Diseases-Clinical Modification; ICH, intracerebral hemorrhage; MAP, mean arterial pressure; MBP, mean blood pressure; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; RCT, randomizerd clinical trial; RR, relative risk; and SBP, systolic blood pressure.

Literature search topics: Treatment of hypotension AND Intravenous fluids and stroke

Table XXIX. Nonrandomized Trials, Observational Studies, and/or Registries of Blood Pressure and Thrombolysis

Study	Study Type/Design;	Patient Population	Primary End Point and Results	Summary
Acronym; Author;	Study Size		(<i>P</i> value; OR or RR; & 95% CI)	Conclusions Comments
Year Published			a 30 % Oi)	Comments
Adelman EE, et	Study type: Review	Inclusion criteria:	1° end point: sICH and other bad outcomes	Data from community hospitals
al. ³⁶⁴ 2016	of data from an RCT	AIS and thrombolysis	Bassifes National and Collaboration of the control	
26419527	to increase alteplase use in Michigan	Exclusion criteria:	Results: No increase in sICH among patients with protocol violations, including BP	
20413321	use in Michigan	N/A	Violations, including br	
	Size: N=557 (233			
	patients with protocol			
Kodankandath	deviations) Study type:	Inclusion criteria: IV	1° end point: Poor outcomes – discharge to SNF, death,	Elevated BP at arrival to a CSC after
TV, et al. ³⁶⁵	Retrospective review	alteplase at OSH and	and discharge mRS>2, sICH	thrombolysis at an outside hospital
2016	of drip and ship	transfer to CSC		is associated with worse outcomes,
<u>27160383</u>	patients to single		Results:	but not necessarily sICH
	CSC	Exclusion criteria: Stroke mimics	• Increased risk of death and d/c to hospice among patients	
	Size: N=130	Stroke milities	with inadequate BP control (SBP>180) upon arrival to CSC • sICH not associated with inadequate BP control at arrival to	
	0120.14 100		CSC	
Liu K, et al. ¹³³	Study type:	Inclusion criteria:	1° end point: Severe hemorrhagic transformation	Chinese cohort
2016	Observational	AIS s/p thrombolysis		Severe hemorrhagic
<u>26892891</u>	Size: N=461	Exclusion criteria:	Results: Early (within the first 6 h) high SBP variability is associated with severe hemorrhagic transformation	transformation was defined as sICH
	312e. N-401	N/A	associated with severe hemormagic transformation	with worsening of the NIHSS by at least 4 points for parenchymal
		1471		hematoma
Waltimo T, et	Study type: Cohort	Inclusion criteria:	1° end point: sICH	Higher BP after alteplase associated
al. ¹³² 2016	C: N-1000	AIS treated with IV	Book to The OB to the decree of 1011 and 40	with sICH
27529662	Size: N=1868	alteplase	Results: The OR for development of ICH per 10 mmHg increase in SBP at 2 h was 1.14 (1.03–1.25), at 4 h was 1.14	
21020002		Exclusion criteria:	(1.03–1.25), at 12 h was 1.12 (1.01–1.23), and at 48 h was	
		N/A	1.12 (1.01–1.23)	
TIMS-China	Study type: Review	Inclusion criteria:	1° end point: sICH	Lower SBP is associated with
Wu W, et al. ¹³⁰ 2016	of data from alteplase	AIS and thrombolysis within 4.5 h	Paguita	decreased risk of sICH
26828609	registry	Withill 4.5 H	Results: • Lower BP at baseline, at 2 h and 24 h after alteplase was	 Lower SBP is associated with better outcomes
	Size: N=1128	Exclusion criteria:	associated with better outcomes (mRS<2 at 90 d)	better outcomes
		N/A	(= =	

			SBP>160 2 h after alteplase was associated with sICH (compared to SBP<140) An increase or no change in SBP after thrombolysis was associated with sICH compared to a decrease in SBP	
Lyerly MJ, et al. ³⁶⁶ 2014 23954609	Study type: Retrospective review of stroke registry Size: 76 violations out of 212	Inclusion criteria: AIS and thrombolysis Exclusion criteria: N/A	1° end point: sICH and other bad outcomes Results: No increase in sICH among patients with protocol violations	Very few patients with BP violations
SAMURAI rt-PA registry Endo K, et al. ¹³¹ 2013 <u>23329210</u>	Study type: Analysis of sICH in SAMURAI registry (0.6 mg/kg) Size: N=527	Inclusion criteria: AIS s/p alteplase Exclusion criteria: N/A	1° end point: Outcomes Results: Initial BPs before thrombolysis were not associated with sICH, but SBP variability within the first 25 h was associated with sICH and death	Increased SBP variability, as opposed to absolute SBPs, was associated with worse outcomes
SITS Mazya M, et al. 129 2012 22442178	Study type: Analysis of sICH in SITS registry Size: N=31,627	Inclusion criteria: AIS, thrombolysis Exclusion criteria: N/A	1° end point: sICH Results: SBP≥146 before treatment associated with sICH (1.6; [1.3–2.0]; P<0.001)	Higher BP before treatment with alteplase is associated with an increased risk of sICH The inflection point for risk occurs within the target BP range for administering alteplase
SITS-ISTR Toni D, et al. ¹²⁸ 2012 22402853	Study type: Subgroup analysis of SITS registry for outcomes in the young Size: N=3246	Inclusion criteria: Age 18–50 y, AIS s/p thrombolysis Exclusion criteria: N/A	1° end point: Outcome, sICH Results: Baseline SBP predicted sICH	No direct mention of BPs>185/110 or 180/105
Kellert L, et al. ³⁶⁷ 2011 21527769	Study type: Observational/retrosp ective Size: N=427	Inclusion criteria: AIS with thrombolysis Exclusion criteria: N/A	1° end point: Hemorrhagic transformation Results: BP protocol violations did not predict ICH or sICH	BP violations were frequent but not associated with ICH or sICH
Butcher K, et al. 126 2010 19926841	Study type: Observation of blood pressures within the EPITHET RCT Size: N=97	Inclusion criteria: AIS with thrombolysis Exclusion criteria: N/A	1° end point: Hemorrhagic conversion Results: Increased hemorrhagic conversion in patients with large DWI lesion volumes and atrial fibrillation and higher 24-h weighted BP	• No direct mention of BPs >185/110 or 180/105

Perini F, et al. ¹²⁷ 2010	Study type: Observational	Inclusion criteria: AIS with thrombolysis	1° end point: Hemorrhagic conversion – HI or PH	No direct mention of BPs>185/110 or 180/105
20674932	Size: N=86	Exclusion criteria: N/A	Results: There was an association between higher SBP and ICH, but not MBP and ICH	

Abbreviations: AlS indicates acute ischemic stroke; BP, blood pressure; CI, confidence interval; CSC, comprehensive stroke center; HI, hemorrhagic infarction; ICH, intracerebral hemorrhage; IV, intravenous; MBP, myelin basic protein; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; OSH, outside hospital; PH, parenchymal hemorrhage; RCT, randomizerd clinical trial; SBP, systolic blood pressure; sICH, symptomatic intracerebral hemorrhage; SNF, skilled nursing facility; and s/p, status post.

Literature search topic: Blood pressure AND Blood pressure and Endovascular Therapy AND Blood Pressure and Thrombolysis

Table XXX. Nonrandomized Studies of Hyperthermia After Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Saxena M, et al. ¹³⁴ 2015 25643903	Study type: Retrospective observational (2 countries) Size: N=53,942 in Australia and New Zealand (5176 with acute ischemic stroke) and N=56.696 in the UK (4190 with acute ischemic stroke)	Inclusion criteria: Adult patients admitted to one of 148 ICUs in New Zealand or the UK with a primary neurological diagnosis Exclusion criteria: CPR in the last 24 h	1° end point: Relationship between peak temperature and stroke outcome Results: Both low (<37.0) and high (>39.0) temperatures are associated with worse stroke outcome	Both hypothermia and hyperthermia are associated with worse stroke outcomes
Karaszewski B, et al. ³⁶⁸ 2012 <u>23075282</u>	Study type: Prospective, observational Size: N=44	Inclusion criteria: AIS Exclusion criteria: ICH, stroke mimics	1° end point: Relationship between body temperature changes and stroke severity Results: Delayed fever is associated with severe stroke and worse outcome	Delayed fever after stroke is associated with severe stroke and more closely associated with poor outcome than admission body temperature; very small patient cohort
PAIS den Hertog HM, et al. ³⁶⁹ 2011 20878419	Study type: Observation within an RCT Size: N=1332	Inclusion criteria: Admission within 12 h of AIS	1° end point: Relationship between admission temperature and stroke outcome Results: Admission temperature does not predict outcome, but elevation within the first 24 h does; the odds for poor	An increase in body temperature over the first 24 h after admission is associated with worse stroke outcome

Exclusion criteria: Temp <36°C or >39°C, imminent death, liver disease, ETOH abuse	outcome increase by 1.3 (95% CI, 1.05–1.63) for each degree C increase in temperature, and the odds for death increase by 1.51 (95% CI, 1.15–1.98) for each degree C increase in temperature	Patients were treated with antipyretics
--	--	---

Abbreviations: AIS indicates acute ischemic stroke; CI, confidence interval; CPR, cardiopulmonary resuscitation; ETOH, ethanol; h, hours; ICH, intracerebral hemorrhage; ICU, intensive care unit; RCT, randomizerd clinical trial; and UK, United Kingdom.

Literature search topic: Temperature

Table XXXI. Randomized Clinical Trials of Normothermia

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Broessner G, et al. ³⁷⁰ 2009 19762706	Aim: To assess the feasibility of endovascular cooling to achieve prophylactic normothermia in an ICU cohort. Study type: Prospective RCT Size: N=102	Inclusion criteria: AIS, SAH, ICH in ICU Exclusion criteria: Active sepsis, h/o HIT, contraindication to placement of a central line, thrombolysis in the last 12 h	Intervention: Endovascular maintenance of normothermia (n=51) Comparator: Standard of care (n=51)	1° end point: Feasibility and fever burden, which was lower in the endovascularly cooled patients Safety end point: Infections were more common in patients with endovascular cooling (96% vs. 80%; <i>P</i> =0.03)	Mortality and neurological outcome (GOS) were similar among groups at discharge, day 30, and month 6	Very few patients with ischemic stroke were included	No clear clinical benefit of achieving normothermia
PAIS den Hertog HM, et al. ³⁷¹ 2009 <u>19297248</u>	Aim: To determine if early treatment with paracetamol (acetaminophen) improves outcome by reducing body temperature. Study type: Prospective double-blind RCT Size: N=1400	Inclusion criteria: AIS or ICH with treatment within 12 h of onset Exclusion criteria: Temp <36°C or >39°C, imminent death, liver disease, ETOH abuse	Intervention: Paracetamol (acetaminophen) at a dose of 6 g/d for 3 d (n=697) Comparator: Matched placebo (n=703)	1° end point: Improvement on the mRS using the sliding dichotomy approach at 3 mo: there was no overall benefit. OR, 1.20 (95% CI, 0.96–1.50) Safety end point: No difference in SAEs between groups.	The study was terminated early (planned enrollment was 2500) due to poor enrollment and funding issues	In post hoc analysis, patients with baseline body temperature of 37–39°C did improve (1.43, 1.02–1.97)	There is no benefit to routine use of acetaminophen in acute stroke

Abbreviations: AlS indicates acute ischemic stroke; ETOH, ethanol; GOS, Glasgow Outcome Scale; HIT, heparin-induced thrombocytopenia; h/o, history of; ICU, intensive care unit; OR, odds ratio; RCT, randomized clinical trial; SAE, serious adverse event; and SAH, subarachnoid hemorrhage. **Literature search topic:** Temperature

Table XXXII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypothermia

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
ReCCLAIM I Horn CM, et al. ³⁷² 2014 <u>23468538</u>	Study type: Single- arm study, open- label, single site of hypothermia in patients treated with thrombectomy; endovascular cooling Size: N=20	Inclusion criteria: AIS, age 18–85 y, ASPECTS 5–7 on pretreatment imaging, M1/M2 occlusion or ICA T occlusion, presentation within 8 h of symptom onset Exclusion criteria: Mild cognitive impairment, IVC filter, end-stage renal failure on HD, anaphylaxis to iodinated contrast, h/o ventricular arrhythmia leading to cardiac arrest, bleeding diathesis	1° end point: Feasibility and safety of intravascular hypothermia after reperfusion Results: • Three patients developed new hemorrhages on the 24 h CT scan, one of which was symptomatic • Six patients died due to malignant cerebral edema • Pneumonia occurred in 25% of patients, UTI occurred in 20% of patients, and DVT in 1 patient	Endovascular cooling is possible after intervention for stroke, but there are no data to suggest it improves outcome

Abbreviations: ASPECTS indicates Alberta Stroke Program Early Computed Tomography Score; CT, computed tomography; ICA T, internal carotid artery terminus; HD, hemodialysis; IVC, inferior venal cava.; DVT, deep vein thrombosis; UTI, urinary tract infection; HD, hemodialysis; AIS, acute ischemic stroke; and y, years Literature search topic: Temperature

Table XXXIII. Randomized Clinical Trials of Hypothermia

Study	Aim of Study;	Patient	Study	End Point Results	Relevant 2°	Study	Summary
Acronym;	Study Type;	Population	Intervention	(Absolute Event Rates,	End Point (if	Limitations;	Conclusions
Author;	Study Size (N)		(# patients) /	P value; OR or RR; &	any)	Adverse Events	Comments
Year Published			Study Comparator	95% CI)			
			(# patients)				
	im: Safety and feasibility surface cooling	Inclusion criteria: AIS,	Intervention: Cooled IV fluids	1° end point: Safety and feasibility – could only cool	Time to target temperature: no	Shivering occurred in all	Hypothermia is difficult to
al. ¹³⁶	Surface cooling	RX within 4.5 h	following by	to 35.0, not 34.5, with	patients	patients	achieve with
	tudy type: Open-label	of stroke onset;	surface cooling	surface cooling	randomized to		surface cooling
27856954 mu	ulticenter RCT	NIHSS≥6	within 4.5 h of symptom onset,	Safety end point:	34.0°C achieved that goal, only 1		 There is an increased risk of
	ize: N=22 (stopped early	Exclusion	3 different	Increased risk of PNA –	patient achieved		PNA with
du	ue to poor recruitment)	criteria: ICH, any conditions	temperature goals (34.0°C,	absolute increase 53%	the goal of 34.5		hypothermia
		that might be	n=5; 34.5°C,	(28%–79%; <i>P</i> =0.002)			
		exacerbated by	n=6; 35.0°C,				
		hypothermia (i.e., bleeding	n=5)				
		diatheses),	Comparator:				
		bradycardia, hypoxia	Standard care (n=6)				
ICTUS2 Air	im: Safety and feasibility	Inclusion	Intervention:	1° end point: mRS 0-1 at	None	Relatively	Increased risk of
Lyden P, et of	endovascular cooling	criteria: AIS	Cooled IV fluids	90 d and the proportion of		small study and	PNA
al. ¹³⁵ 2016 St t	tudu tuma Multinantan	treated with	followed by	patients with mRS 0–1 at		underpowered	
	tudy type: Multicenter ngle-blind RCT	alteplase; NIHSS ≥7 and	insertion of endovascular	90 d was similar (33% vs. 38%; 0.81; 0.36–1.85)		for the primary outcome	
		≤20 for left brain	cooling device	,		• Patients	
Siz	ize: N=120	stroke and ≤24 for right brain	(n=63)	Safety end point: Trends to increased mortality		received	
		stroke	Comparator:	(15.9% vs. 8.8%; OR,		meperidine, buspirone and	
			Standard care	1.95; 95% CI, 0.56–7.79)		surface warming	
		Exclusion criteria:	(n=57)	and PNA (19.0% vs. 10.5%; OR, 1.99; 95% CI		to prevent shivering	
		Prestroke mRS		0.63–6.98) in hypothermic		Sinvernig	
		>1, contraindica-		patients			
		tions to hypothermia,					

O. V. at al 272	Aire Forbet	item 1a on NIHSS >1	lutaria d'a		N/A		I benefit a series
Su Y, et al. ³⁷³ 2016 26696645	Aim: Evaluate hypothermia in malignant MCA infarction Study type: Single-center RCT, not blinded Size: N=33	Inclusion criteria: Age 18–80 y RX within 48 h of onset Infarct at least 2/3 MCA territory on MRI or CT NIHSS ≥15 for non-dominant hemisphere or NIHSS ≥20 for dominant hemisphere Reduced LOC (NIHSS≥1 on item 1a) Unable to undergo DC Exclusion criteria: Premorbid mRS >2 Hemorrhagic conversion >1/3 MCA territory with space occupying effect GCS<6; rapidly improving symptoms Both pupils fixed and dilated	Intervention: Hypothermia to 33°C–34°C for 24–72 h using endovascular catheter (n=16) Comparator: Standard medical care with goal temperature 36.5°C–37.5°C (n=17)	1º end point: • Feasibility and all-cause mortality and mRS at 6; mortality was similar in both groups (8/16 vs. 7/17) • Survivors treated with hypothermia achieved better neurological outcomes at 6 mo (OR, 10.5; 95% CI, 0.9–121.4; adjusted OR, 4.794; 95% CI, 0.323–71.103) Safety end point: More complications with hypothermia group (P<0.001)	N/A	Very small study No difference in PNA with hypothermia Patients were not treated with decompressive hemicraniectomy Patients were not treated with decompressive hemicraniectomy Hypothermia was initiated rather late in the course of stroke (an average of 42 h)	Hypothermia was associated with a trend toward better outcomes in survivors, but there were many more complications

HARIS Hong JM, et al. ³⁷⁴ 2014 24203846	Aim: Hypothermia after recanalization Study type: RCT with randomization by center Size: N=75	Other brain lesions Platelets <75K Severe coagulopathy Inclusion criteria: IA RX; NIHSS ≥10; DWI confirmation of infarct; recanalization (TICI ≥2b) within 6 h of symptom onset Exclusion criteria: Not specified	Intervention: Surface cooling to 34.5°C- 35.0°C for 48 h (n=39) Comparator: Normothermia (n=36)	1° end point: More patients treated with hypothermia had a good outcome (mRS 0–2) at 3 mo; 45% vs. 23% (<i>P</i> =0.017); OR, 3.0 (95% CI, 1.02–8.90; <i>P</i> =0.047) Safety end point: Similar mortality in both groups (15% vs. 14%)	• Less HT, with no HT in 39% of hypothermiatreated patients and no HT in 14% standard care group (<i>P</i> =0.016) • Less cerebral edema with hypothermia (no cerebral edema in 54% with hypothermia and no cerebral edema in 17% with standard of care, <i>P</i> =0.001)	Relatively small study done in 2 centers Trends toward more favorable characteristics at baseline in the hypothermia group	Therapeutic hypothermia after recanalization is associated with less HT, less cerebral edema and better outcomes at 3 mo Further studies will need to be done to confirm these results
Piironen K, et al. ¹³⁷ 2014 24436240	Aim: Safety and feasibility of mild hypothermia Study type: RCT Size: N=36	Inclusion criteria: AIS treated with alteplase; NIHSS 7–20 Exclusion criteria: mRS>2; CHF; angina, sepsis, ICH	Intervention: Hypothermia to 35°C with surface cooling and IV cold saline (n=18) Comparator: Standard of care/normother mia (n=18)	1° end point: Feasibility: number of patients with temperature <36°C for >80% of the cooling period was 15/18 (83%) Safety end point: AEs were more common in hypothermia group (19 vs. 12), with pneumonia occurring in 39% vs. 11%; P=0.054	No difference in good outcome (mRS 0–2) at 3 mo (7/18 [39%] in each group)	Trend towards more PNA with hypothermia (39% vs. 11%, P=0.054)	Increased risk of PNA with hypothermia
COOLAID Ovesen C, et al. ³⁷⁵ 2013 23278712	Aim: Feasibility study Study type: RCT (2 centers)	Inclusion criteria: Age≥18; NIHSS≥5 and ≤18; RX within	Intervention: Endovascular cooling (n=7) or surface cooling (n=10) targeting	1° end point: Safety; feasibility: endovascular cooling achieves goal temperature more quickly than surface cooling	mRS at 90 d was 3.0 (1–6) in cooled patients and 1.5 (1–6) in controls	Small study	Hypothermia was not associated with clinical benefit but was

	Size: N=31	24 h of symptoms onset; stroke by CT or MRI Exclusion criteria: mRS≥3; >50% MCA territory; severe concomitant disease	temperature of 33°C Comparator: Normothermia (n=14)	Safety end point: More bradycardia in cooled patients (65% vs. 0%; P=0.0001); Trend towards more PNA in cooled patients (35% vs. 9%, P=0.09)			associated with more AEs
ICTUS-L Hemmen TM, et al. ¹³⁸ 2010 20724711	Aim: Feasibility and safety of hypothermia Study type: RCT Size: N=58	Inclusion criteria: AIS and RX with alteplase within 6 h Exclusion criteria: Contraindication s to hypothermia	Intervention: 24 h of endovascular cooling (n=28) Comparator: No active cooling (n=30)	1° end point: Safety Safety end point: Increased PNA in hypothermia group (50% vs. 10%; P=0.001) and more patients with at least 1 SAE (75% vs. 43.3%; P=0.018)	90-d mortality was similar in both groups (21.4% vs. 16.7%) as was good outcome (mRS 0–1), which occurred in 5/28 in the hypothermia group and 7/30 in the normothermia group	Small study Patients received meperidine, buspirone and surface warming to prevent shivering	There is no signal of clinic benefit in this study, and hypothermia was associated with a significant risk of PNA

Abbreviations: AE indicates adverse event; AIS, acute ischemic stroke; CHF, congestive heart failure; CT, computed tomography; DC, decompressive craniectomy; DHC, decompressive hemicraniectomy; DWI, diffusion-weighted imaging; GCS, Glasgow Coma Scale; h, hour; HT, hemorrhagic transformation; IA, intra-arterial; ICH, intracerebral hemorrhage; IV, intravenous; LOC, level of consciousness; MCA, middle cerebral artery; MRI, magnetic resonance imaging; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PNA, pneumonia; RCT, randomized clinical trial; RX, treatment; SAE, serious adverse event; and TICI, thrombolysis in cerebral infarction.

Literature search topic: Temperature

Table XXXIV. Randomized Clinical Trials Evaluating Intravenous Alteplase for Treatment of Acute Ischemic Stroke*

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ENCHANTED Anderson CS, et al. 143 2016 27161018	Aim: Determine if reduced-dose alteplase would be non-inferior to standard-dose alteplase Study type: RCT (open label) Size: N=3310	Inclusion criteria: Patients with disabling stroke symptoms within 4.5 h of onset who were candidates for IV alteplase as per approved indications Exclusion criteria: Pre-existent disability; hemorrhage on CT scan; high risk of bleeding	Intervention: Alteplase 0.6 mg/kg up to 60 mg (n=1653) Comparator: Alteplase 0.9 mg/kg up to 90 mg (n=1654)	1° end point: mRS 2–6 at 90 d: 53.2% vs. 51.1%; OR, 1.09; 95% CI, 0.95–1.25; <i>P</i> =0.51 Safety end point: sICH: 1% vs. 2.1%	Ordinal shift analysis of mRS scores: OR, 1.0; 95% CI, 0.89–1.13; P=0.04 for non-inferiority Mortality at 90 d: 8.9% vs. 10.3%, P=0.07	Open label design Large proportion of Asian patients	Low-dose IV alteplase did not meet the non- inferiority end point for the reduction of death and disability at 90 d in comparison to standard-dose IV alteplase
IST-3 IST-3 Collaborative Group ¹⁴² 2012 <u>22632908</u>	Aim: Determine whether alteplase would benefit patients who did not meet license criteria for alteplase (mainly older than 80 y and up to 6 h from onset) Study type: RCT (open control) Size: N=3035	Inclusion criteria: Disabling stroke symptoms within 6 h of onset Exclusion criteria: Hemorrhage on CT scan; prohibitive risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=1515) Comparator: Open control (n=1520)	1° end point: OHS 0–2 at 6 mo: 37% vs. 35%; OR, 1.13; 95% CI, 0.95–1.35; <i>P</i> =0.18 Safety end point: sICH: 7% vs. 1%	Ordinal shift in OHS scores at 180 d: OR, 1.27; 95% CI, 1.10–1.47; <i>P</i> =0.001)	This trial enrolled patients without established indication for IV alteplase (e.g., age>80 y, time beyond 4.5 h) in Europe	IV alteplase did not meet the primary efficacy end point but improved outcomes based on an ordinal shift in the distribution of the OHS scores

EPITHET Davis SM, et al. ⁹³ 2008 18296121	Aim: Establish the effect of IV alteplase on lesion growth, reperfusion, and clinical outcome in patients with radiological penumbra 3–6 h after stroke onset Study type: RCT Size: N=101	Inclusion criteria: Disabling stroke symptoms 3–6 h from onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=52) Comparator: Placebo (n=49)	1° end point: Infarct growth at 90 d by MRI: NS Safety end point: sICH: N/A	 mRS 0–1: 36% vs. 21% (P=0.15) Reperfusion was more common with alteplase than with placebo and was associated with less infarct growth (P=0.001), better neurological outcome (P<0.0001), and better functional outcome (P=0.010) than was no reperfusion 	Small size Primary analysis was per protocol	The trial focused primarily on the value of MRI for patient selection Alteplase was associated with increased reperfusion in patients who had mismatch and a trend to less infarct growth
ECASS 3 Hacke W, et al. ¹⁴⁴ 2008 <u>18815396</u>	Aim: Determine the efficacy of alteplase between 3 and 4.5 h of stroke onset Study type: RCT Size: N=821	Inclusion criteria: Disabling stroke symptoms 3–4.5 h from onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding, including: NIHSS >25, history of previous stroke	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=418) Comparator: Placebo (n=403)	1° end point: mRS 0–1 at 90 d: 52.4% vs. 45.2%; OR, 1.34; 95% CI, 1.02–1.76; <i>P</i> =0.04 Safety end point: sICH: 2.4% vs. 0.2%	● Global outcome analysis (algorithm for chances of favorable outcome): 1.28; 95% CI, 1.00–1.65; <i>P</i> =0.05 ● Mortality at 90 d: 7.7% vs. 8.4% (<i>P</i> =0.68)	No difference in the rate of other serious adverse events	IV alteplase was superior to placebo in improving functional outcomes when administered between 3 and 4.5 h from stroke onset

ATLANTIS A Clark WM, et al. 376 2000 10753980	Aim: Determine the safety and efficacy of alteplase up to 6 h after stroke onset Study type: RCT Size: N=142	and diabetes; use of warfarin regardless of INR Inclusion criteria: Disabling stroke symptoms within 6 h of onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; high risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=71) Comparator: Placebo (n=71)	1° end point: • NIHSS score improvement by 4 points at 24 h: 40% vs. 21%; P=0.02 • NIHSS score improvement by 4 points at 30 d: 60% vs. 75%; P=0.05 Safety end point: sICH: 11% vs. 0%	Mortality at 90 d: 23% vs. 7% (P=0.01)	The trial was stopped by the DMSB because of safety concerns in the 5- to 6-h group	IV alteplase administered within 6 h had early but not sustained benefit Only a small minority were treated within 3 h The small sample size limited power and reliability
ATLANTIS B Clark WM, et al. ³⁷⁷ 1999 <u>10591384</u>	Aim: Determine the safety and efficacy of alteplase 3-5 h after stroke onset Study type: RCT Size: N=613 (547 treated within 3–5 h)	Inclusion criteria: Disabling stroke symptoms 3–5 h from onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=307; n=272 within 3– 5 h) Comparator: Placebo (n=306, n=275 within 3– 5 h)	1° end point: NIHSS score ≤1 at 90 d: 34.5% vs. 34%; <i>P</i> =0.89 (34% vs. 32%; <i>P</i> =0.65 per protocol within 3–5 h) Secondary end point: mRS 0–1 at 90 d: 41.7% vs. 40.5%; <i>P</i> =0.77 (42.3% vs. 38.9%; <i>P</i> =0.42 per protocol within 3–5 h) Safety end point: sICH: 6.7% vs. 1.3% (7% vs. 1.1% per protocol within 3–5 h)	Mortality at 90 d: 11% vs. 6.9% (<i>P</i> =0.09)	More than 80% of the patients were enrolled after 3 h	IV alteplase was not beneficial within the 3- to 5-h window IV alteplase was beneficial in the small subgroup of patients treated within 3 h
ECASS II Hacke W, et al. ³⁷⁸ 1998 <u>9788453</u>	Aim: Determine the safety and efficacy of alteplase up to 6 h after stroke onset	Inclusion criteria: Disabling stroke symptoms within 6 h of onset	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=409)	1° end point: mRS 0–1 at 90 d: 40.3% vs. 36.6%; OR, 1.2; 95% CI, 0.9–1.6; <i>P</i> =0.28	mRS scores dichotomized for death or dependency (post hoc	Small minority of patients treated within the first 3 h	IV alteplase was not significantly beneficial when therapeutic

	Study type: RCT Size: N=800	Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Comparator: Placebo (n=391)	Safety end point: sICH: 8.8% vs. 3.4%	analysis): 54.3% in the alteplase group and 46.0% in the placebo group had favorable outcomes (score 0–2; absolute difference 8.3%, P=0.024) • Mortality: no difference at 90		window was extended to 6 h
ECASS Hacke W, et al. ³⁷⁹ 1995 7563451	Aim: Determine the safety and efficacy of alteplase up to 6 h after stroke onset Study type: RCT Size: N=620	Inclusion criteria: Disabling stroke symptoms within 6 h of onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Intervention: Alteplase 1.1 mg/kg up to 100 mg (n=313) Comparator: Placebo (n=307)	1° end point: •Median BI at 90 d: 75 vs. 85; P=0.99 •Median mRS at 90 d: 3 vs. 3; P=0.41 Safety end point: Parenchymal hematoma: 19.8% vs. 6.9%	N/A	Many patients with protocol violations (N=109) were included in the ITT analysis	Alteplase was not beneficial on the ITT analysis when patients with protocol violations were excluded from the target population analysis; there was a significant difference in favor of alteplase in the median mRS and mRS 0–1 (although not significant on the median BI score)
NINDS NINDS Stroke Study rt-PA Group ⁸⁷ 1995	Aim: Determine the safety and efficacy of alteplase within 3 h after stroke onset	Inclusion criteria: Disabling stroke symptoms within 3 h of onset	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=312)	1° end point: Global test of neurological function at 90 d (BI, mRS, GOS, NIHSS) • OR, 1.9; 95% CI, 1.3–	Mortality at 90 d: alteplase 17% vs. placebo 21% (<i>P</i> =0.30)	The trial was composed of two parts, and parts 1 and 2 had different	IV alteplase was superior to placebo in improving functional
<u>7477192</u>	Study type: RCT		Comparator: Placebo (n=312)	2.9; <i>P</i> =0.002		primary end points	outcomes when administered

Size : N=624	Exclusion	■ mRS 0–1 at 90 d: 39%	within 3 h of
	criteria:	vs. 26%; OR, 2.4; 95%	stroke onset
	Hemorrhage on	CI,1.5–3.7; <i>P</i> <0.001	
	CT scan; high		
	risk of bleeding	Safety end point: sICH:	
	-	6.4% vs. 0.6%	

^{*}Trials with ≤100 subjects are not included

Abbreviations: BI, Barthel index; CI, confidence interval; CT, computed tomography DMSB, Data Monitoring and Safety Board; GOS, Glasgow Outcome Score; h, hour; ITT, intention-to-treat; IV, intravenous; MCA, middle cerebral artery; MRI, magnetic resonance imaging; mRS, modified Rankin scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NS: not significant; OHS: Oxford handicap scale; OR, odds ratio; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; and y, years.

Literature search topic: Alteplase, IV, stroke

Table XXXV. Randomized Clinical Trials of Intravenous Alteplase for Mild Stroke 3-4.5 Hours

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ECASS III: additional subgroups Bluhmki E, et al. ¹⁴⁵ 2009 <u>19850525</u>	Aim: To seek evidence of confounding factors or subgroups that might differentially affect treatment outcome Study type: RCT Size: N=821 (total); according to NIHSS: 0–5, 66(I)/62(C); 6–10, 169(I)/148(C); 11–15, 85(I)/77(C); 16–20, 77(I)/76(C); >20, 21(I)/40(C)	Inclusion criteria: Clinical diagnosis of ischemic stroke causing a measurable neurological deficit defined as impairment of language, motor function, cognition and/or gaze, vision or neglect Onset of symptoms between 3 and 4 h prior to initiation of	Intervention: Intravenous alteplase (0.9 mg/kg, maximum dose 90 mg over 60 min with initial 10% of dose given as bolus over 1 min) (n=418) Comparator: Standard care – no intravenous heparin, oral anticoagulants, aspirin, or volume expanders during the first	1° end point: mRS 0–1 at 90 d (OR, 95% CI) • Overall: 1.34 (1.02–1.76) ¹⁴⁴ • According to NIHSS: 0–9, 1.28 (0.84–1.96); 10–19, 1.16 (0.73–1.84); ≥20, 2.32 (0.61–8.90); interaction <i>P</i> =0.63 Safety end point: Symptomatic intracranial hemorrhage (NINDS definition) • Overall: 2.38 (1.25–4.52) ¹⁴⁴ • According to NIHSS: 0–9, 3.04 (0.82–11.22); 10–19, 2.18 (096–4.98); ≥20,	NIHSS 0–1 at 90 d Overall: 1.33 (1.01–1.75) 144 According to NIHSS: 0–9, 1.17 (0.77– 1.78); 10–19, 1.32 (0.82– 2.12); ≥20, 1.88 (047–7.52) Global outcome statistic at 90 d Overall: 1.28 (1.00–1.65) 144 According to NIHSS 0–9: 1.12 (0.77– 1.64); 10–19:	Only 128 patients NIHSS 0–5, not analyzed separately	No interaction of benefit or safety with stroke severity

administration o	f 24 h;	3.03 (0.52–17.50);	1.15 (0.77–	
study drug, and		interaction <i>P</i> =0.89	1.71); ≥ 20: 1.76	
others	heparin		(0.44–7.15)	
	(≤10,000 IU), or		 Mortality at 90 	
Exclusion	of equivalent		d	
criteria: Minor	doses of low-		Overall: 0.90	
neurological	molecular-		(0.54–1.49) 144	
deficit or	weight heparin,		According to	
symptoms	was permitted		NIHSS: 0-9,	
rapidly	for DVT		2.70 (0.54–	
improving before	' '		13.53); 10–19,	
start of infusion,	(n=403)		0.81 (0.41–	
and others			1.59); ≥20, 1.03	
			(0.37–2.87);	
			interaction	
			P=0.40	

Abbreviations: C indicates control; CI, confidence interval; d, days; DVT, deep vein thrombosis; h, hours; HR, hazard ratio; I, intervention; IV, intravenous; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NINDS, National Institute of Neurological Disorders and Stroke; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk.

Literature search topic: Intravenous alteplase for mild stroke 3-4.5 hours

Table XXXVI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Alteplase 3-4.5 Hours for Mild Stroke

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Year Published			<u> </u>	Comments
GWTG Romano JG, et al. ¹⁴⁷ 2015 25642650	Study type: Registry of hospitalized patients with stroke Size: N=7621 patients with NIHSS ≤5 treated with IV alteplase within 4.5 h	Inclusion criteria: Final diagnosis of acute ischemic stroke Exclusion criteria: • Less than 75% completion on medical history variables, arrived beyond 4.5 h from symptom onset, not treated with alteplase, NIHSS>5, missing an NIHSS score	End Points: Discharge home, independent ambulation, death, sICH Results: Discharge home:	Good functional outcomes, mortality, and risk of sICH are the same in mild stroke treated 0–3 h and 3–4.5 h

		Did not arrive through the emergency department, not discharged from the same hospital, time to treatment longer than 4.5 h or missing	• 3–4.5 h: 1.3% sICH • 0–3 h: 2.0% • 3–4.5 h: 1.4%	
SITS-ISTR Ahmed N, et al. ¹⁴⁶ 2010 20667790	Study type: Registry of patients treated with IV alteplase for acute ischemic stroke Size: N=23,942 between 12/2002 and 2/2010; N=2376 treated 3–4.5 h after symptom onset	Inclusion criteria: Ischemic stroke and were treated with IV alteplase within 4.5 h after symptom onset Exclusion criteria: European Summary of Product Characteristics criteria	1° end point: mRS at 3 mo Results: Baseline NIHSS ≤5 • 0–3 h: mRS 0–1, 71% • 3–4.5 h: mRS 0–1, 72% Safety: Mortality at 3 mo Baseline NIHSS ≤5 • 0–3 h: mRS 0–1, 3% • 3–4.5 h: mRS 0–1, 4%	Good functional outcomes (mRS 0–1) and risk of sICH are the same in mild stroke treated 0–3 h and 3–4.5 h

Abbreviations: CI indicates confidence interval; h, hours; HR, hazard ratio; IV, intravenous; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; and sICH, symptomatic intracerebral hemorrhage. **Literature search topic:** Intravenous alteplase for mild stroke 3-4.5 hours

Table XXXVII. Nonrandomized trials, Observational Studies, and/or Registries of Sickle Cell Disease and IV Alteplase

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Adams RJ, et al. ¹⁴⁸ 2017 28183857	Study type: Observational case- control study Size: 832 Sickle cell disease cases and 3328 non-sickle cell	Inclusion criteria: Get With the Guidelines Hospitalized Stroke Cases Exclusion criteria: N/A	1° end point: Outcomes after IV alteplase Results: • No difference in IV alteplase use (8.2% in cases vs 10.1% in controls, <i>P</i> =0.9818) • No difference in rates of symptomatic ICH (4.9% in cases vs 3.2% in controls, <i>P</i> =0.4502)	IV alteplase is safe and effective in adult patients with sickle cell disease

disease controls	No difference in rates of in-hospital death (3.5% in cases vs)	
(matched for age,	5.0% in controls, <i>P</i> =0.5654)	
sex and race)		

Table XXXVIII. Nonrandomized Trials, Observational Studies of Antithrombotic Agents given within 24 hours after Intravenous Alteplase for the Treatment of Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Jeong HG, et al. 166 2016 27521435	Study type: Single- center, retrospective analysis of early antithrombotics (<24 h) in AIS + alteplase/EVT Size: N=712	Inclusion criteria: AIS and IV alteplase or EVT Exclusion criteria: Early sICH or systemic bleeding, grave prognosis, planned surgical treatment	1° end point: Hemorrhagic transformation at 4-7 d post-treatment, mRS 0-1 at 3 mo Results: No increased odds of sICH (0.85; 0.35–2.10) or difference in mRS at 3 mo (1.09; 0.75–1.59) in patients with early initiation of antithrombotics	No increased risk of hemorrhage with early initiation of AP or AC therapy (<24 h) following IV alteplase or EVT compared to initiation >24 h Limitations include generalizability and selection bias

Abbreviations: AC indicates anticoagulant; AIS, acute ischemic stroke; AP, antiplatelet; d, days; EVT, endovascular therapy; h, hours; IV, intravenous; mRS, modified Rankin Scale; and sICH, symptomatic intracerebral hemorrhage. **Literature search topic**: Intravenous Fibrinolysis

Table XXXIX. Randomized Clinical Trials Evaluating Intravenous Fibrinolytics Other Than Alteplase for Treatment of Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
NOR-TEST Logallo N, et al. ¹⁷⁰ 28780236	Aim: To establish superiority of tenecteplase 0.4 mg/kg (single bolus) as compared with alteplase 0.9 mg/kg (10%	Major Inclusion criteria: Age 18 years or older; Ischemic	Intervention: IV tenecteplase 0.4 mg/kg (single intravenous bolus) n=549	1° end point:: mRS 0-1 at 3 months: tenecteplase : 354/549 (64%) alteplase: 345/551 (63%)	NIHSS score of 0 or improvement of ≥4 at 24 h:	Only mild strokes: Median NIHSS 4 (IQR 2-8)	●Tenecteplase at a dose of 0·4 mg/kg has a similar safety and efficacy

bolus + 90% infusion/60 minutes) for patients with acute ischemic stroke Study Type: multicenter, prospective, open-label, blinded endpoint, phase 3 RCT Size: N=1107	stroke with measurable deficit on NIHSS); treatment within 4½ hours of stroke onset, or Wake-Up Stroke- Treatment within 4½ hours after awakening based on FLAIR-DWI mismatch on MRI; eligible for bridging therapy before thrombectomy Major Exclusion Criteria: Premorbid mRS ≥3; Seizure at stroke onset and no visible occlusion on baseline CT; large areas of hypodense ischaemic changes on baseline CT;	Comparator: IV alteplase 0.9 mg/kg (10% bolus + 90% infusion/60 minutes) n=551	OR 1.08; 95% CI, 0.84 - 1.38; <i>P</i> =.52 Safety endpoint: Symptomatic ICH at 24-36 hrs: tenecteplase: 3% alteoplase: 2% OR, 1.16; 95% CI, 0.51 - 2.68; <i>P</i> =0.70	tenecteplase: 41.7% alteplase 38.8% OR, 1.12 (95% CI, 0.89-1.43; P=0.97)	• 18% stroke mimics • 4% had symptoms on awakening and had positive DWI-FLAIR mismatch • given its superiority design to detect a 9% difference in the primary end point, this trial was not designed to establish noninferiority	profile to alteplase in a stroke population predominantly composed of patients with minor neurological impairment and no major intracranial occlusion.
---	---	--	---	---	--	--

		systolic blood pressure >180 mm Hg or diastolic blood pressure >110 mm Hg despite of blood pressure lowering therapy; other usual IV alteplase exclusions					
DIAS 4 von Kummer R, et al. ¹⁶⁷ 2016 27803391	Aim: Assess the safety and efficacy of desmoteplase between 3 h and 9 h after stroke onset in patients with occlusion or high-grade stenosis in major cerebral arteries Study type: RCT	Inclusion criteria: NIHSS 4–24; within 3–9 h of symptom onset; occlusion or high-grade stenosis of a major cerebral artery on MRA/CTA	Intervention: Desmoteplase, 90 mcg/kg (n=124) Comparator: Placebo (n=128)	1° end point: mRS 0–2 at 90 d*: 42% vs. 36%; adjusted OR, 1.45; 95% CI, 0.79–2.64; <i>P</i> =0.23 Safety end point: sICH: 5% vs. 2%	Desmoteplase increased the recanalization rate at 12 to 24 h by an absolute difference of 22.8% (P=0.02)	• Terminated after enrollment of 270 of 400 planned patients following the results of DIAS 3 • No safety concerns	Desmoteplase was not superior to placebo Patients recruited from North America, Latin America and Europe
	Size : N=270	Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarction >1/3 of MCA territory or >1/2 of ACA or PCA territory; high risk of bleeding					
DIAS 3 Albers GW, et al. ¹⁶⁸	Aim: Assess the safety and efficacy of desmoteplase between 3	Inclusion criteria: NIHSS 4–24; within 3–9	Intervention: Desmoteplase,	1° end point: mRS 0–2 at 90 d*: 51% vs. 50%;	No differences in mortality (10% in both groups)	No safety concerns	Desmoteplase was not superior to placebo

2015 25937443	h and 9 h after stroke onset in patients with occlusion or high-grade stenosis in major cerebral arteries Study type: RCT	h of symptom onset; occlusion or high-grade stenosis of a major cerebral artery on MRA/CTA	90 mcg/kg (N=247) Comparator: Placebo (N=245)	adjusted OR, 1.20; 95% CI, 0.79–1.81; <i>P</i> =0.40. Safety end point: sICH: 3% vs. 2%			Patients recruited from Asia and Europe
	Size: N=492	Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarction >1/3 of MCA territory or >1/2 of ACA or PCA territory; high risk of bleeding					
ATTEST Huang X, et al.89 2015 25726502	Aim: Assess the efficacy and safety of tenecteplase vs. alteplase within 4·5 h of stroke onset Study type: RCT (Phase II) Size: N=104	Inclusion criteria: Indication for alteplase; within 4.5 h of symptom onset; available CTP at baseline Exclusion criteria: Any contraindication s for alteplase GFR<30 ml/min	Intervention: Tenecteplase, 0.25 mg/kg single bolus, up to 25 mg (N=52) Comparator: Alteplase, 0.9 mg/kg infusion, up to 90 mg (N=52)	1° end point: Percentage of penumbral tissue salvaged at 24–48 h: 68% vs. 68%; <i>P</i> =0.81 Safety end point: sICH: 2% vs. 4%	No differences in mRS at 30 or 90 d No difference in mortality at 90 d	Analysis was per protocol Extracranial bleeding: 8% vs. 0%	Tenecteplase 0.25 mg/kg appears to be as safe as standard-dose alteplase
DIAS-J Mori E, et al. ³⁸⁰ 2015 26251244	Aim: Assess the safety and tolerability of desmoteplase within 3 to 9 h of stroke onset in Japanese patients Study type: RCT (Phase II dose ranging)	Inclusion criteria: NIHSS 4–24; within 3–9 h of symptom onset; occlusion or high-grade stenosis of a major cerebral	Intervention: Desmoteplase, 70 mcg/kg (N=16); 90 mcg/kg (n=16) Comparator: Placebo (n=16)	1° end point: sICH within 72 h: 6% with 70 mcg/kg vs. 0% with 90 mcg/kg vs. 13% with placebo Safety end point: Primary end point was the safety end point	No increase in brain edema or other major adverse events	Dose ranging trial	Desmoteplase in doses of 70 mcg/kg or 90 mcg/kg appeared safe

Parsons M, et al. ⁹¹ 2012 22435369	Aim: Compare the effectiveness of two different doses of tenecteplase vs. alteplase in acute stroke patients within 6 h of symptom onset and selected by CTP Study type: RCT (phase IIb) Size: N=75	artery on MRA/CTA Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarction >1/3 of MCA territory or >1/2 of ACA or PCA territory; high risk of bleeding Inclusion criteria: Indication for alteplase; within 6 h of symptom onset; ≥20% mismatch by DWI/PWI or CTP; large intracranial artery occlusion on CTA Exclusion criteria: Any contraindication s for alteplase	Intervention: Tenecteplase, 0.1 mg/kg single bolus, up to 10 mg (N=25) or 0.25 mg/kg single bolus, up to 25 mg (n=25) Comparator: Alteplase, 0.9 mg/kg infusion, up to 90 mg (n=25)	Co-primary end points: Percentage of perfusion lesion that was reperfusion at 24 h on MRI: 79% with tenecteplase (both doses combined) vs. 55% with alteplase; P=0.004 NIHSS improvement at 24 h: 8±5 with tenecteplase (both doses combined) vs. 3±6 with alteplase Safety end point: No sICH cases	mRS 0–1 at 90 d: 72% with tenecteplase 0.25 mg/kg vs. 40% with alteplase	No differences in ICH or other serious adverse events	Both tenecteplase doses appeared superior to standard-dose alteplase for the studied end points
Haley EC, et al. ¹⁶⁹ 2010 20185783	Aim: Compare the effectiveness of three different doses of tenecteplase vs. alteplase in acute stroke patients within 3 h of symptom onset Study type: RCT (phase IIb/III)	Inclusion criteria: Indication for alteplase; within 3 h of symptom onset Exclusion criteria: Any	Intervention: Tenecteplase, 0.1 mg/kg (N=31), 0.25 mg/kg (N=31), and 0.4 mg/kg (n=19) Comparator: Alteplase 0.9	1° end point: mRS 0–1: 45% with 0.1 mg/kg, 48% with 0.25 mg/kg, 37% with 0.4 mg/kg and 42% with placebo; <i>P</i> >0.3 for all comparisons Safety end point: Total of 6 symptomatic ICHs: 3 of 19 (15.8%) in the 0.4	N/A	Prematurely terminated due to slow recruitment	The 0.4 mg/kg dose was inferior; the other two doses appeared to be similar to standard dose alteplase

	Size: N=112	contraindication s for alteplase	mg/kg infusion, up to 90 mg (n=31)	mg/kg group, 2 of 31 (6.5%) in the 0.25 mg/kg tenecteplase group, and none (0 of 31) in the 0.1 mg/kg tenecteplase group; by comparison, there was 1 of 31 (3.2%) symptomatic ICH in the rtPA group			
DIAS 2 Hacke W, et al. 92 2009 19097942	Aim: Assess the safety and efficacy of two doses of desmoteplase between 3–9 h after stroke onset in patients with radiological penumbra Study type: RCT (phase II dose-ranging) Size: N=193	Inclusion criteria: NIHSS 4–24; ≥20% mismatch by DWI/PWI or CTP; within 3–9 h of symptom onset Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarct core >1/3 of MCA territory on DWI or CTP; high risk of bleeding; ICA occlusion	Intervention: Desmoteplase, 90 mcg/kg (n=57) or 125 mcg/kg (N=66) Comparator: Placebo (n=63)	1° end point: Favorable clinical outcome at 90 d*: 47% with 90 mcg/kg vs. 36% with 125 mcg/kg vs. 46% with placebo; P=0.47 Safety end point: sICH: 3.5% with 90 mcg/kg vs. 4.5% with 125 mcg/kg vs. 0% with placebo	Median changes in lesion volume: 90 mcg/kg desmoteplase 14% (0.5 cm³), 125 mcg/kg desmoteplase 11% (0.3 cm³), placebo 10% (-0.9 cm³) Mortality rate was 5% for 90 mcg/kg desmoteplase, 21% for 125 mcg/kg desmoteplase, and 6% for placebo	Dose-ranging trial	The investigated doses of desmoteplase did not improve outcomes in patients with acute stroke and tissue-at-risk within 3–9 h from symptom onset
DEDAS Furlan AJ, et al. ⁹⁴ 2006 <u>16574922</u>	Aim: Assess the safety and efficacy of two doses of desmoteplase between 3–9 h after stroke onset in patients with radiological penumbra Study type: RCT (Phase II, dose-escalation) Size: N=104	Inclusion criteria: NIHSS 4–20; DWI/PWI mismatch; within 3–9 h of symptom onset Exclusion criteria: Age>85 y; hemorrhage on MRI;	Intervention: Desmoteplase, 90 mcg/kg (n=14) or 125 mcg/kg (n=15) Comparator: Placebo (n=8)	1° end point: Rate of reperfusion on MRI after 4–8 h: favorable clinical outcome at 90 d*: 18% with 90 mcg/kg vs. 53% with 125 mcg/kg vs. 38% with placebo Safety end point: sICH: 0% in all groups	Favorable clinical outcome at 90 d*: 29% with 90 mcg/kg vs. 60% with 125 mcg/kg vs. 25% with placebo; P=0.02 in favor of the 125 mcg/kg dose	Dose-escalation trial	Desmoteplase in doses of 90 mcg/kg or 125 mcg/kg appeared safe

		infarction >1/3 of MCA territory on DWI; high risk of bleeding					
DIAS Hacke W, et al. ⁹⁵ 2005 <u>15569863</u>	Aim: Assess the safety and efficacy of various doses of desmoteplase between 3–9 h after stroke onset in patients with radiological penumbra Study type: RCT (Phase II, dose-finding) Size: N=104	Inclusion criteria: NIHSS 4–20; DWI/PWI mismatch; within 3–9 h of symptom onset Exclusion criteria: Age>85 y; hemorrhage on MRI; infarction >1/3 of MCA territory on DWI; high risk of bleeding	Intervention: Desmoteplase, multiple doses (n=75) Comparator: Placebo (n=27)	1° end point: Rate of reperfusion on MRI after 4–8 h: 71% vs. 19%; P=0.001 (125 mcg/kg dose) Safety end point: sICH: 26.7% with fixed doses (i.e., not weight-adjusted) and 2.2% with weight-adjusted doses vs. 0% with placebo	Favorable clinical outcome at 90 d*: 60% vs. 47%; P=0.009 (125 mcg/kg dose)	Dose-finding trial	Acceptable rate of sICH with doses of up to 125 mcg/kg Desmoteplase may confer improved rates of reperfusion by MRI criteria

^{*}Defined as ≥8 points improvement on NIHSS (or 0 to 1), mRS (0 to 2), and Barthel Index (75 to 100).

Abbreviations: ACA indicates anterior cerebral artery; CI, confidence interval; CT, computed tomography; CTA, computed tomography angiogram; CTP, computed tomography perfusion; DWI, diffusion weighted imaging; GFR, glomerular filtration rate; h, hours; ICA, internal carotid artery; ICH, intracerebral hemorrhage; MRA, magnetic resonance angiogram; MRI, magnetic resonance imaging; mRS, modified Rankin scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NS, not significant; OR, odds ratio; PCA, posterior cerebral artery; PWI, perfusion weighted imaging; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; y, years.

Literature search topic: IV lysis

Table XL. Randomized Clinical Trials Of Adjuvant Sonothrombolysis (since 2013 AIS Guidelines)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
NOR-SASS Nacu A, et al. ¹⁷¹ 27980128	Aim: to demonstrate superiority of contrast- enhanced ultrasound treatment	Major Inclusion Criteria: Acute ischemic stroke patients ≥ 18 years, with or without visible	Intervention: Contrast Enhanced Sonothrombolysi s with 2 MHz pulse-wave	6 1° end points defined in different ways: neurological improvement at 24 hours (3) and functional handicap at 90 days (3):		Stopped prematurely (183 of planned 276) for lack of funding	Sonothrombolysi s was safe among unselected ischemic stroke patients with or

(sonothrombolysis) versus	arterial	transcranial			without a visible
sham ultrasound	occlusion on	Doppler (TCD)	All P 0.05		occlusion on
treatment in consecutively	computed	ultrassund			computed
admitted patients with	tomography	for 60			tomography
acute ischemic stroke	angiography	minutes and	Safety end point:		angiography and
within 4.5	(CTA) and	microbubbles			with varying
hours after stroke onset	treatable ≤ 4(½)	plus	sICH 2/93 vs 4/90; P=0.13		grades of clinical
	hours after	alteplase/tenect			severity. There
Study Type: multicenter,	symptom onset	eplase (n=93)			was no
prospective, open-label,	' '				statistically
blinded endpoint, phase 3	Major	Comparator:			significant
RCT	Exclusion	sham			clinical effect of
	Criteria:	ultrasound,			sonothrombolysi
Size : N=183	Premorbid mRS	sham			s in this
	≥3; Primary	microbubbles			prematurely
	endovascular	(NaCl 0.9%)			stopped trial.
	treatment;	plus			
	Recent or	alteplase/tenect			
	unstable	eplase			
	coronary	(n=90)			
	ischemia or				
	resting angina				
	<7 days; Acute				
	cardiac				
	insufficiency,				
	cardiac				
	insufficiency				
	class III/IV;				
	serious cardiac				
	arrhythmias;				
	Any right-left-				
	shunt, severe				
	pulmonary				
	hypertension				
	(PAP				
	>90 mmHg)				
	Moderate to severe chronic				
	obstructive				
	pulmonary				

disease		
(COPD),		
baseline O2		
saturation		
<80 %)		

Table XLI. Nonrandomized Trials, Observational Studies, and/or Registries of Endovascular Therapy

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Coutinho JM, et al. ³⁸¹ 2017 28097310	Study type: Post hoc-analysis Size: N=291 (N=160 ET and IV alteplase, N=131 ET alone)	Inclusion criteria: Two multicenter, prospective clinical trials using the Solitaire device: SWIFT and STAR registry Exclusion criteria: Patients in dataset treated with Merci device	1° end point: Reperfusion 90 d mRS 0–2 Mortality Results: No clinically meaningful differences between groups TICl 2b/3: ET+IV alteplase 84.1%, ET alone 84.7%. 90 d mRS 0–2: ET+IV alteplase 57.7%, ET alone 47.7% (P=0.1) Mortality: ET+IV alteplase 8.1%, ET alone 12.2%	Similar treatment times, device passes, and emboli to new territory between groups Non-randomized patient sample, with local site variation in treatment protocols Approximately 1/4 of patients in ET+IV alteplase group were treated with reduced dose alteplase (0.6 mg/kg), although sensitivity analysis excluding these patients found similar results Findings suggest that IV alteplase does not provide additional benefit in endovascular treatment of acute ischemic stroke from large vessel occlusion
Bush CK, et al. ¹⁷⁴ 2016 26807742	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis of contemporary ET with stent retrievers vs. standard care for patients with acute ischemic anterior circulation stroke: MR CLEAN, ESCAPE,	1° end point: Day 90 mRS 0–2 Results: OR for ET: 2.2 (95% CI, 1.66–2.98; <i>P</i> <0.0001)	Improved functional outcomes and greater chance of functional outcome after ET with new generation thrombectomy devices Similar complication profiles and mortality between ET and standard care Treatment effect independent of IV alteplase administration

OFFD.		EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Non-randomized trials, studies not reporting ORs or variances, studies where ET with new generation thrombectomy devices was not part of intervention		Findings underscore impact of time dependence on treatment outcome but cannot provide precise time-point after onset of symptoms for futility Homogenous benefit across subgroups Findings strongly support recommendations for early ET for acute ischemic stroke patients with LVO, using new thrombectomy devices
SEER Campbell BC, et al. ¹⁷³ 2016 26888532	Study type: Meta- analysis Size: N=787	Inclusion criteria: Meta-analysis (patient-level data) of acute ischemic stroke trials in which Solitaire stent retriever was the only or the predominant device used: SWIFT PRIME, ESCAPE, EXTEND- IA, REVASCAT Exclusion criteria: Non-randomized trials, trials without imaging confirmation of LVO, trials where Solitaire was not the dominant device utilized initially, and others	1° end point: Day 90 mRS ordinal analysis Results: • mRS score improvement OR, 2.7 (95% CI, 2.0–3.5; P≤1×10-10) • NNT of 2.5 for improvement in 1 grade of mRS score	 No difference in secondary end points of sICH or mortality NNT of 4.25 for independent functional outcome, homogeneity of benefit across subgroups Revascularization rates 77% with Solitaire Reduced mortality after ET in patients ≥80 y 20% vs. 40%, adjusted OR: 3.7 (1.3–10.6) P=0.01, despite overall equivalence for mortality as a secondary outcome Study details results with Solitaire and does not evaluate other devices for thrombectomy Identifies robust benefit for Solitaire thrombectomy in acute ischemic stroke patients
HERMES Goyal M, et al. ¹⁷² 2016 26898852	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis (patient level data) of ET vs. medical management for	1° end point: Day 90 mRS shift analysis Results: • Adjusted cOR: 2.49 (95% CI, 1.76–3.53; P<0.0001) • NNT for 1 point reduced disability on mRS is 2.6	Shows clinical benefit from thrombectomy across wide range of age and stroke severity 71% with TICI 2b/3 result after ET

		acute ischemic stroke due to LVO: MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Trials other than the 5 recent randomized trials listed		Mortality, sICH, and parenchymal hematoma equivalent between groups Homogeneous benefit across prespecified subgroups, including age>80 y, tandem occlusions, ASPECTS or NIHSS score Benefit irrespective of IV alteplase administration Patient-level data utilized for analysis from studies utilizing current clinical practice patterns. Consistency of benefit suggests that results likely apply to broader patient range after acute ischemic stroke from LVO
Grech R, et al. ³⁸² 2016 26597570	Study type: Meta- analysis Size: Solitaire N=762, Trevo N=210	Inclusion criteria: Meta-analysis of studies utilizing Solitaire or Trevo in the treatment of acute ischemic stroke Exclusion criteria: Case reports or series, patients treated without ET, trails utilizing pooled data from other sources, animal studies, and others	1° end point: Recanalization rates 90 d mRS 0–2 sICH Results: No clinically meaningful differences between Solitaire and Trevo groups Recanalization 86.7% vs. 80.8% (Solitaire vs. Trevo) Weighted mean 1.9 passes vs. 2.5 passes (Solitaire vs. Trevo) Functional outcome in 52.1% vs. 47.6% (Solitaire vs. Trevo) sICH 7% vs. 8.5% (Solitaire vs. Trevo)	Aggregates information from studies regarding stent retrievers to increase statistical power Evaluates only Solitaire and Trevo devices Only two RCTs included; remainder are observational or non-RCT designs Includes trials utilizing TIMI 2/3 recanalization targets Supports the use of stent retrievers to achieve functional outcomes with good safety profiles, without clear differences between Solitaire and Trevo
Rodrigues FB, et al. 383 2016 27091337	Study type: Meta- analysis Size: N=2925	Inclusion criteria: Meta-analysis of ET vs. medical management for acute ischemic stroke due to LVO: IMS II, MR RESCUE, SYNTHESIS	1° end point: • 90 d mRS 0–2 • Mortality Results: • ET functional outcome risk ratio: 1.37 (95% CI, 1.14–1.64) • No mortality differences risk ratio: 0.9 (95% CI, 0.76–1.06)	Provides evidence for the benefit of ET, particularly stent retriever thrombectomy, over medical management alone for treatment of acute ischemic stroke from LVO Includes both THERAPY and THRACE but only data from results presented in press or meetings

		Expansion, MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA, THERAPY, THRACE Exclusion criteria: Observational studies, non- controlled or non- randomized interventional studies, studies without mechanical thrombectomy in intervention arm or IV alteplase in control arm	Analysis restricted to MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA, THERAPY, THRACE: functional outcome risk ratio: 1.56 (95% CI, 1.38–1.75), mortality risk ratio: 0.86 (95% CI, 0.69–1.06)	Heterogeneous group of studies included, with variable endovascular treatment methods. Analyzed further as studies published prior to 2015 and those published during or after 2015
Saver JL, et al. ³² 2016 27673305	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis of time to treatment of ET vs. medical management for acute ischemic stroke due to LVO: MR CLEAN, ESCAPE, EXTEND- IA, SWIFT PRIME, REVASCAT Exclusion criteria: Trials other than the 5 recent randomized trials listed	1° end point: 90 d mRS ordinal shift Results: • ET mRS 2.9 (95% CI, 2.7–3.1); standard care mRS 3.6 (95% CI, 3.5–3.8) • mRS scale distribution declined with longer time to treatment. • Absolute risk difference for reduced disability 39.2% at 3 h, 30.2% at 6 h, 15.7% at 8 h; benefit absent after 7.3 h	Defines a time window of <7.3 h to arterial puncture for benefit of ET for acute ischemic stroke patients with LVO No sub group analysis by trial to determine which imaging criteria selected patients who benefitted after 6 h most accurately Time dependence for therapy highlights need for initiation of therapy as rapidly as possible after onset of symptoms, with benefit greatest for treatment initiation <2 h from symptom onset In hospital processes directly associated with improved functional outcome Mortality, sICH, and parenchymal hematoma rates did not vary with longer delay to reperfusion

Touma L, et	Study type:	Inclusion criteria:	1° end point: 90 d mRS 0–2	Mortality, sICH, parenchymal
al. ³⁸⁴	Systematic review	Systematic review		hematoma inconclusive between
2016	and meta-analysis	and meta-analysis to	Results:	groups (wide CI), no detectable
<u>26810499</u>		quantify benefits and	Stent retriever patients:	differences between groups
	Size: N=1287	risks of using stent retrievers with alteplase compared to alteplase alone for acute ischemic stroke from large vessel occlusion, MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Observational studies, case reports, reviews, abstracts,	 Greater functional outcome, RR: 1.72 (95% CI, 1.48–1.99) Greater odds of 1-unit decrease in 90 d mRS, pooled OR: 2.03 (95% CI, 1.65–2.50) 	Asserts the benefit of stent retriever thrombectomy for treatment of acute ischemic stroke patients with LVO
Badhiwala JH,	Study type: Meta-	and others Inclusion criteria:	1° end point:	Confirms improved functional
et al. ³⁸⁵	analysis	Meta-analysis of ET	·	outcomes and higher rates of
2015	analysis	vs. medical	• Day 90 mRS 0–2	angiographic revascularization at 24
26529161	Size: N=2423	management for	Ordinal mRS improvement	
20323101	0126. IV-2423	acute ischemic	Revascularization at 24 h	h for ET compared to IV alteplase alone
		stroke: IMS II, MR	• sICH within 90 d	
		RESCUE,	All-cause mortality at 90 d	No clinically meaningful difference between groups in symptomatic
		SYNTHESIS Expansion, MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA Exclusion criteria: Non-randomized studies, retrospective series, pilot studies, abstracts, studies	Results: • mRS score 0–2: 44.6% for ET vs. 31.8% for standard care, OR, 1.71 (95% CI, 1.18–2.49; <i>P</i> =.005) • ET treatment benefit across all mRS scores, OR, 1.56 (95% CI, 1.14–2.13; <i>P</i> =.005) • ET higher rates of angiographic revascularization at 24 h (75.8% vs. 34.1%; OR, 6.49 (95% CI, 4.79–8.79; <i>P</i> <.001)) • Similar sICH and mortality	intracranial hemorrhage or all-cause mortality at 90 d • Confirmation of LVO preprocedurally increased chance of improved functional outcome after ET • Benefit of ET was increased by concomitant use of IV alteplase
		that did not include IV alteplase for controls		

		or ET for		
		interventions, and others		
Chen CJ, et al. ³⁸⁶ 2015 26537058	Study type: Meta- analysis Size: N=2423	Inclusion criteria: Meta-analysis of outcomes in RCT of acute ischemic stroke patients undergoing ET: IMS II, MR RESCUE, SYNTHESIS Expansion, MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria:	1° end point: Day 90 mRS 0–2 Results: OR for ET, 1.71; P=0.005 Subgroup analysis of 6 trials with LVO criteria: OR, 2.23 for d 90 mRS 0–2; P<0.00001	 Subgroup analysis of 2 trials without LVO selection criteria failed to demonstrate difference between groups in functional independence Angiographic revascularization achieved in 565 (56%) of 1,005 patients Similar sICH and mortality rates Heterogeneous treatment methods in ET group
		Single center, non- randomized trials, failure to compare ET to standard care directly		
Elgendy IY, et al. ³⁸⁷ 2015 26653623	Study type: Meta- analysis Size: N=2410	Inclusion criteria: Meta-analysis of outcomes in RCT of ET for patients presenting within 4.5 h of symptom onset: IMS II, MR RESCUE, MR CLEAN, ESCAPE, EXTEND- IA, SWIFT PRIME, REVASCAT Exclusion criteria: Trials that prohibited IV alteplase before thrombectomy, non- randomized studies,	1° end point: 90 d mRS 0–2 Results: For ET RR, 1.45 (95% CI, 1.22–1.72; <i>P</i> <0.0001)	 ET associated with 45% relative and 13% absolute higher likelihood of mRS 0–2 compared to standard care alone Demonstrates the efficacy and safety of ET compared to standard care for acute ischemic stroke patients Similar rates of sICH but a trend towards decreased mortality with ET (RR: 0.86, 95% CI: 0.72–1.02; P=0.09)

		retrospective series,		
Fargen KM, et al. ³⁸⁸ 2015 25432979	Study type: Meta- analysis Size: N=183/N=1903	and others Inclusion criteria: Meta-analysis of outcomes in RCT of ET in acute ischemic stroke patients with LVO criteria and without LVO criteria: PROACT II, MELT, IMS III, SYNTHESIS, MR RESCUE, MR CLEAN	1° end point: Day 90 mRS 0–2 shift analysis Results: • LVO confirmation: OR, 1.67 (95% CI: 1.29–1.16, <i>P</i> =0.0001) • No LVO confirmation: OR, 1.27 (95% CI, 1.05–1.54; <i>P</i> =0.019)	Identifies superior outcomes in patients undergoing ET, particularly with LVO demonstrated preprocedurally Does not include contemporary ET trials, with the exception of MR CLEAN
		Exclusion criteria: Non-randomized studies, retrospective series, comparison to historical controls		
Kumar G, et al. ³⁸⁹ 2015 25271064	Study type: Meta- analysis Size: N=2056 (IA N=1715, IV N=341)	Inclusion criteria: Meta-analysis of published studies on stroke therapy for basilar artery occlusion Exclusion criteria: Studies of LVO other than basilar artery, abstracts, case reports, reviews, meta-analyses, studies lacking outcome data, and others	1° end point: Death or dependency (DoD), mortality Results: • For entire population Recanalization decreased: DoD RR: 0.67 (95% CI, 0.63–0.72) Mortality RR: 0.49 (95% CI, 0.44–0.55) • For IA patients recanalized: DoD RR: 0.67; mortality RR: 0.53	Included endovascular and IV cases of basilar occlusion Suggests equivalence between endovascular therapies and IV treatment, but supports the benefit of recanalization in patients with acute basilar occlusion
Marmagkiolis K, et al. ³⁹⁰ 2015 26476611	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis of ET for ICA and M1 occlusions vs. standard care: MR	1° end point: Day 90 mRS 0–2 Results: ET 42.6% vs. standard care 26.1% (<i>P</i> <0.0001), OR, 2.43 (95% CI, 1.9–3.09)	Analysis restricted to acute ischemic stroke therapy in contemporary trials sICH and 90-d mortality equivalent between groups

		CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA Exclusion criteria: Non-randomized studies, retrospective		Confirms safety and efficacy of stent retriever use for ischemic stroke after large vessel occlusion
Yarbrough CK, et al. ³⁹¹ 2015 26396032	Study type: Systematic review and meta-analysis Size: N=2049	series, and others Inclusion criteria: Systematic review and meta-analysis to evaluate effect of ET on outcome for LVO patients: IMS II, MR RESCUE, SYNTHESIS Expansion, MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Non-randomized studies, case reports or series, and others	1° end point: 90 d mRS 0–2 Results: • All trials: pooled OR: 1.75 (95% CI: 1.2–2.54) • All trials requiring LVO confirmation: OR, 2.0 (95% CI, 1.48–2.71)	Confirms benefit of ET for acute ischemic stroke patients compared to standard care alone Use of IV alteplase associated with improved outcomes (OR: 1.83, 95% CI: 1.46–2.31), no IV alteplase also increased odds for good outcome, but not statistically significant (OR: 1.59, 95% CI: 0.86–2.95) Effect of ET greater in subgroup with higher NIHSS Trend towards decreased mortality in ET group; similar sICH rates Treatment benefit if ET commenced before 6-8 h from onset Heterogeneous ET techniques in studies included
Almekhalfi MA, et al. ³⁹² 2013 22837311	Study type: Meta- analysis Size: N=925 (MERCI N=357, Penumbra N=455, stent retriever N=113)	Inclusion criteria: Meta-analysis of device-based trials to assess impact of recanalization on the outcome of ET Exclusion criteria: Studies investigating devices other than MERCI, Penumbra, or stent retrievers	1° end point: TICI 2b/3, day 90 mRS 0–2 Results: • Successful recanalization in 59.1% MERCI studies (95% CI, 49.3–77.7), 86.6% Penumbra studies (95% CI, 84.1–93.8), and 92.9% stent retriever studies (95% CI, 90.9–99.9) • mRS 0–2 in 31.5% MERCI, 36.6% Penumbra, and 46.9% stent retriever	Analyzes comparative recanalization rates, procedural timing, and outcomes between various devices based on published trials Minimal data available for procedure times for MERCI device, but Penumbra and stent retriever comparable in treatment times References first generations of stent retrievers, and earlier generations of aspiration systems; does not reflect current practice patterns

Fields JD, et al. ³⁹³	Study type: Meta- analysis	Inclusion criteria: Meta-analysis of IA	1° end point: Day 90 mRS 0–1, 0–2; sICH	Estimates benefit of endovascular therapy from intra-arterial lytic
2011 21990808	Size: N=334	thrombolytics for MCA occlusion vs. placebo: PROACT, PROACT II, MELT Exclusion criteria: Studies utilizing mechanical thrombectomy techniques	Results: • IAT day 90 mRS 0–1: 31% vs. 20%, OR, 2.0 (95% CI, 1.2–3.4; <i>P</i> =0.01) • IAT mRS 0–2: 43% vs. 31%, OR, 1.9 (95% CI, 1.2–3.0; <i>P</i> =0.01) • sICH: 11% vs. 2%, OR, 4.6 (95% CI, 1.3–16; <i>P</i> =0.02)	administration Endovascular therapy improved all functional outcome measures with similar mortality despite increased risk of sICH Supports efficacy and safety within 6 h of intra-arterial lytic therapy for MCA occlusions Heterogeneity in sample; MELT (compared to PROACT and PROACT II) treated patients earlier and with more mild strokes, and permitted guidewire maceration Urokinase not available in the US since October 2010 Many control patients would now receive IV alteplase; effect of intra-arterial thrombolytic compared to contemporary stroke therapy therefore uncertain

Abbreviations: ASPECTS indicates Alberta Stroke Program Early CT Score; CI, confidence interval; DoD, death or dependency; ET, endovascular therapy; GA, general anesthesia; IAT, internal carotid artery; IV, intravenous; LVO, large vessel occlusion; MCA, middle cerebral artery; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; NNT, number needed to treat; OR, odds ratio; sICH, symptomatic intracerebral hemorrhage; TICI, thrombolysis in cerebral infarction; TIMI, thrombolysis in myocardial infarction; RCT, randomized clinical trial; RR, relative risk; and y, years.

Literature search topic: Endovascular interventions

Table XLII. Randomized Clinical Trials Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy

Table XLII. Randomized Clinical Trials Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy							
Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
AnSTROKE Lowhagen Henden P et al. 181 28522637	Aim: null hypothesis was that the anesthesia technique does not have an impact on neurological outcome, as long as severe hypotension during the procedure is avoided Study type: single-center, open-label, blinded end-point RCT Size: 90	Major Inclusion criteria:) ≥18 years of age; proven occlusion in anterior cerebral circulation by CT angiography; NIHSS ≥10 (iright-sided occlusion) or ≥14 (left-sided occlusion; treatment initiated within 8 hours after onset of symptoms. Major Exclusion criteria: anesthesiologica I concerns (airway, agitation, etc) at the discretion of the attending anesthetist;) premorbidity mRS ≥4 or other comorbidity	Intervention: General anesthesia (GA) by propofol and remifentanil, maintained with sevoflurane and remifentanil, (n=45) Comparator: Conscious sedation (CS) by remifentanil infusion (n=45)	1° end point: mRS 0-2 at 3 months: GA: 19/45 (42.2%) CS: 18/45 (40.0%) (P=1.00) Safety end point: • Symptomatic ICH 22-36 hrs: GA: 0/45 (0%) CS: 3/45 (7%) P=0.24	mTICI 2b-3 GA: 41/45 (91%0 CS: 40/45(89%) P=1.00	single-center study size of the study limited superiority design not designed to establish noninferiority	•In this small, single center study no statistically significant difference was found between GA and CS in neurological outcome 3 months after stroke or in mTICI 2b/3 recanalization.

		contraindicating embolectomy.					
SIESTA Schonenberger S, et al. ¹⁸² 2016 27785516	Aim: To assess whether conscious sedation is superior to general anesthesia for early neurological improvement among patients receiving acute ischemic stroke thrombectomy Study type: RCT Size: N=150	Inclusion criteria: NIHSS>10, IC ICA, M1, <9 h Exclusion criteria: Aspiration risk, severe agitation, difficult airway access, and many more	Intervention: GA during procedure (n=73) Comparator: Conscious sedation during procedure (n=77)	1° end point: NIHSS improvement after 24 h: - 3.2 NIHSS points GA group, -3.6 NIHSS points conscious sedation group; mean difference 0.4 points (95% CI, -3.4 to 2.7; P=0.82) Safety end point: Death 24.7% vs. 24.7% Vessel perforation/SAH 1.4% vs. 2.6% (P=0.59)	TICI 2b/3: 89% GA vs. 80% conscious sedation group (not clinically meaningful) No clinically meaningful differences in mRS or mortality at 3 mo between groups No clinically meaningful differences in process time points or duration of endovascular therapy	Single center; experienced with general anesthesia pre- trial initiation, small sample size, early primary end point assessment (24 h)	Trial findings do not support an advantage for conscious sedation over GA in acute endovascular ischemic stroke intervention

Abbreviations: CI indicates confidence interval; ICA, internal carotid artery; GA, general anesthesia; NIHSS, National Institutes of Health Stroke Score; RCT, randomized clinical trial; SAH, subarachnoid hemorrhage; and TICI, thrombolysis in cerebral infarction.

Literature search topics: Endovascular interventions

Table XLIII. Nonrandomized Trials, Observational Studies, and/or Registries Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Berkhemer OA, et al. ¹⁸⁰ 2016 <u>27421546</u>	Study type: Post hoc analysis of MR CLEAN	Inclusion criteria: Post hoc analysis comparing the clinical and angiographic	1° end point: 90 d mRS 0-2 Results:	Conversion to GA occurred in 4.4% No data on type of anesthesia collected in MR CLEAN

	Size: GA N=79, CS N=137, control N=267	outcomes of GA vs. CS for all patients allocated to ET in MR CLEAN Exclusion criteria: Inability to undergo ET (1 patient)	 GA with 51% lower chance of mRS 0–2 (95% CI: 31%–86%), absolute risk difference 19% for mRS 0–2 in favor of CS group compared to control (adjusted OR, 2.96; 95% CI, 1.78–4.92) Greater infarct growth in GA group. Door to groin time 32 min longer in GA group (<i>P</i>=0.001) Similar safety outcomes and procedural duration between GA and CS 	Limited details about procedural BP changes Results challenge routine use of GA
Brinjkji W, et al. ³⁹⁴ 2015 25395655	Study type: Systematic review and meta-analysis Size: N=1956	Inclusion criteria: Systematic review and meta-analysis comparing the clinical and angiographic outcomes of GA vs. CS Exclusion criteria: Case reports, non- comparative studies, studies that failed to separate outcome by anesthesia type, and others	1° end point: 90 d mRS 0–2 Results: GA with lower odds of mRS 0–2 (OR, 0.43; 95% CI, 0.35–0.53) and TICl 2b/3 (OR, 0.54; 95% CI, 0.37–0.80); higher odds of death (OR, 2.59; 95% CI; 1.87–3.58) and respiratory complications (OR, 2.09; 95% CI; 1.36–3.23).	No included studies were randomized trials Higher rates of both recanalization and good functional outcomes for patients treated with conscious sedation Decreased rates of mortality and respiratory complications for patients treated with conscious sedation Similar procedural time-points between groups

Abbreviations: CI indicates confidence interval; CS, conscious sedation; ET, endovascular therapy; GA, general anesthesia; mRS, modified Rankin Scale; OR, odds ratio; and TICI, thrombolysis in cerebral infarction. **Literature search topic**: Endovascular interventions

Table XLIV. Nonrandomized Studies of Antiplatelet Therapy in Patients with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Li W, et al. ³⁹⁵	Study type: Single-	Inclusion criteria: IV	1° end point: 90 d mRS (favorable 0–1)	Interpretation limited by
2016	arm, open label,	alteplase + tirofiban		generalizability; warrants a
<u>27608821</u>	propensity matched	infusion	Results: 70.7% vs. 46.2% (<i>P</i> =0.026)	prospective randomized trial
	Size: N=41	Exclusion criteria: alteplase exclusions		

Wada T, et al. ³⁹⁶ 2016 <u>27567296</u>	Study type: Retrospective, observational, propensity matched Size: N=2726 (LAA), N=1612 (SVD)	Inclusion criteria: AIS in Japan treated with ozagrel (subtyped LAA, SVD) Exclusion criteria: Age<40 y, atrial fibrillation or other indication for AC	1° end point: mRS at discharge Results: LAA, OR, 0.99 (0.88–1.11); SVD, OR, 1.99 (0.87–1.16) sICH no difference	Limited by generalizability; warrants further study in a prospective randomized trial
CLEAR-ER Adeoye O, et al. ¹⁸⁹ 2015 <u>25523054</u>	Study type: Post hoc, propensity matched analysis of data from 3 prior trials Size: 85 vs. 169 matched controls (IMS III, ALIAS Part 2)	Inclusion criteria: 0.6 mg/kg IV alteplase <3 h, + eptifibatide infusion Exclusion criteria: alteplase exclusions	1° end point: Severity-adjusted mRS at 90 d (favorable outcome mRS 0–2) Results: 45% vs. 36% unadjusted RR, 1.24 (0.91–1.69)	0.6 mg/kg IV alteplase + eptifibatide in AIS warrants a prospective randomized trial
CLEAR-FDR Adeoye O, et al. ¹⁹⁰ 2015 26243231	Study type: Single- arm, open-level, multicenter Size: N=27	Inclusion criteria: Full dose IV alteplase <3 h, + eptifibatide infusion Exclusion criteria: alteplase exclusions	1° end point: sICH within 36 h Results: 3.7% sICH	Full dose IV alteplase + eptifibatide appears safe and warrants a prospective randomized trial

Abbreviations: AC indicates anticoagulation; AlS, acute ischemic stroke; CI, confidence interval; IV, intravenous; LAA, large-artery atherosclerosis; OR, odds ratio; RR, relative risk; sICH, symptomatic intracerebral hemorrhage; and SVD, small vessel disease.

Literature search topic: Antiplatelet

Table XLV. Randomized Clinical Trials Comparing Antiplatelet to Control

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SOCRATES Johnston SC and Amarenco P ¹⁹⁶ 2016 27705253	Aim: To determine the efficacy of ticagrelor vs. ASA in minor stroke or high-risk TIA Study Type: Randomized, double-blind, placebo-controlled trial Size: N=13,199 (674 centers, 33 countries)	Inclusion criteria: Acute minor stroke (NIHSS≤5) or TIA (ABCD2≥4), age>40, ability to start study drug within 24 h onset Exclusion criteria: Clear indication or contraindication for specific antiplatelet therapy; thrombolytic or EVT; numerous others	Intervention: Ticagrelor (180 mg day 1, 90 mg BID × 90 d) + placebo (n= 6589) Comparator: ASA (300 mg day 1, 100 mg daily × 90 d) + placebo (n=6610)	1° end point: Time to composite stroke, MI, or death up to 90 d: ticagrelor 442 (6.7%) vs. ASA 497 (7.5%); HR, 0.89 (0.78–1.01); P=0.07 Safety end point: Time to first bleeding event up to 90 d: no difference	 Ischemic stroke: 385 (5.8) vs. 441 (6.7), HR, 0.87 (0.76–1.00); P=0.046 All stroke: 390 (5.9) vs. 450 (6.8) HR, 0.86 (0.75–0.99); P=0.03; p-values considered nonsignificant 	Low enrollment of high-risk patients (e.g., symptomatic carotid) Low event rates in TIA group More patients had premature discontinuation in the ticagrelor group due to adverse events (e.g., dyspnea)	Ticagrelor not recommended
Ciccone A, et al. ¹⁹¹ 2014 24609741	Aim: To assess safety and efficacy of glycoprotein GP Ilb-Illa inhibitors in AIS Study Type: Cochrane review Size: N=1365 (4 trials)	Inclusion criteria: Randomized, unconfounded trials, started treatment within 6 h of stroke onset Exclusion criteria: Nonrandomized, risk of bias at	Intervention: IV GP IIb-IIIa inhibitor (abciximab, tirofiban) either alone or in combination with IV thrombolytic agents (n=685) Comparator: (n=680)	1° end point: Death or dependency at follow-up: abciximab vs. placebo: OR: 0.97 (0.77–1.22); tirofiban vs. ASA: OR, 1.00 (0.52–1.92) Safety end point: sICH: abciximab vs. placebo, OR, 4.6 (95% CI, 2.01–10.54); tirofiban vs. ASA, OR, 0.32 (95% CI, 0.03–3.19)	Non-significant difference in risk of extracranial hemorrhage: abciximab (OR, 1.81; 95% CI: 0.96–3.41); tirofiban (OR, 3.04, 95% CI, 0.12–75.83)	Abciximab contributed 89% of the total study participants considered Heterogeneity between trials Only 2 new trials (abESTT-II and SETIS) included since 2006 review	Supports current LOE

Sandercock PA, et al. ¹⁸⁶ 2014 24668137	Aim: To assess the safety and efficacy of oral antiplatelet therapy in AIS started within 14 d from onset Study Type: Cochrane review Size: N=41,483 (8 trials)	Inclusion criteria: Randomized, unconfounded trials of oral antiplatelet therapy in AIS started within 14 d from onset Exclusion criteria: Nonrandomized, treatment allocation not concealed from enrolling investigator	Intervention: Antiplatelet therapy (4 studies tested ASA, 3 tested ticlopidine, and 1 tested ASA / dipyridamole); *2 trials (IST, CAST) testing ASA 160–300 mg daily, started within 48 h, contributed 98% of the data (n=20,647) Comparator:	1° end point: Death or dependency at follow-up: ASA vs. control, OR, 0.95 (0.91–0.99); P=0.01 Safety end point: sICH: ASA vs. control, OR: 1.23 (1.00–1.50), P=0.04	Significant reduction in recurrent ischemic stroke, PE	Excluded CLEAR trials (2008, 2013) due to lower dose of IV alteplase in the intervention group compared to control 98% of data contributed by 2 trials published in 1997 (IST, CAST) No new trials included since 2008 Trial data limited primarily to conclusions about ASA Excluded IV antiplatelet agents	Supports current LOE
CHANCE Wang Y, et al. ¹⁹³ 2013 23803136	Aim: To determine the efficacy of ASA/clopidogrel vs. ASA alone in patients with minor stroke or high-risk TIA Study Type: Randomized, double-blind, placebo-controlled trial	Inclusion criteria: Acute minor stroke (NIHSS ≤3) or TIA (ABCD2 ≥4), age>40, ability to start study drug within 24 h onset	(n=20,644) Intervention: Open label ASA (75–300 mg day 1, 75 mg day 2– 21) + clopidogrel (300 mg day 1, 75 mg daily day 2–90) (n=2584) Comparator: Open label ASA (75–300 mg day	1° end point: New stroke (ischemic or hemorrhagic at 90 d): ASA/clopidogrel 212 (8.2%) vs. ASA/placebo 303 (11%), HR, 0.68 (0.57–0.81); P<0.001 Safety end point: Moderate to severe	• Stroke, MI, vascular death: 216 (8.4%) vs. 307 (11.9%), HR, 0.69 (0.58–0.82); P<0.001 • Ischemic stroke 204 (7.9%) vs. 295 (11.4%), HR, 0.67 (0.56–0.81); P<0.001	Stratified randomization by site and time of randomization Intervention group received placebo ASA d 21–90 Questionable external validity in non-Asian populations and	Adds to current LOE; awaiting definitive RCT (POINT)

	Size: N=5170 (114 centers in China)	Exclusion criteria: Isolated sensory, visual symptoms, dizziness without evidence of infarct on MRI, a clear indication for AC, history of GIB or surgery within previous 3 mo, numerous other exclusions	1, 75 mg day 2– 90 + placebo (n=2586)	bleeding event: no difference	No difference in hemorrhagic stroke	outside of Chinese healthcare system: POINT trial ongoing in the US	
CHANCE-1 YEAR Wang Y, et al. ¹⁹⁴ 2015 25957224	Aim: To determine the efficacy of ASA/clopidogrel vs. ASA alone in patients with minor stroke or high-risk TIA Study Type: Randomized, double-blind, placebo-controlled trial Size: N=5170 (114 centers in China)	Inclusion criteria: Acute minor stroke (NIHSS ≤3) or TIA (ABCD2 ≥4), age>40, ability to start study drug within 24 h onset Exclusion criteria: Isolated sensory, visual symptoms, dizziness without evidence of infarct on MRI, a clear indication for AC, history of GIB or surgery within previous 3 mo, numerous other exclusions	Intervention: Open label ASA (75–300 mg day 1, 75 mg day 2– 21) + clopidogrel (300 mg day 1, 75 mg daily day 2–90) (n=2584) Comparator: Open label ASA (75–300 mg day 1, 75 mg day 2– 90 + placebo (n=2586)	1° end point: New stroke (ischemic or hemorrhagic 1° end point at 1 year ASA/clopidogrel 275 (10.6%) vs. ASA/placebo 362 (14.0%), HR, 0.78 (0.65–0.93); P<0.001 Safety end point: Moderate to severe bleeding event: no difference	• Stroke, MI, vascular death at 1 yr: 282 (10.9%) vs. 370 (14.3%), HR, 0.78 (0.65–0.93); P=0.005 • Ischemic stroke at 1 yr: 263 (10.2%) vs. 349 (13.5%), HR, 0.77 (0.64–0.93); P=0.006 • No difference in hemorrhagic stroke	Stratified randomization by site and time of randomization Intervention group received placebo ASA d 21–90 Questionable external validity in non-Asian populations and outside of Chinese healthcare system: POINT trial ongoing in the US	The early benefit of clopidogrel-aspirin treatment in reducing the risk of subsequent stroke persisted for the duration of 1-year of follow-up. Adds to current LOE; awaiting definitive RCT (POINT)

Abbreviations: AC indicates anticoagulation; ASA, acetylsalicylic acid; BID, twice a day; CI, confidence interval; EVT, endovascular therapy; GIB, gastrointestinal bleeding; HR, hazard ratio; IV, intravenous; LOE, level of evidence; MI, myocardial infarction; MRI, magnetic resonance imaging; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PE, pulmonary embolus; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; sx, symptoms; and TIA, transient ischemic attack. **Literature search topic**: Antiplatelet

Table XLVI. Randomized Clinical Trials Comparing Anticoagulant to Control

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ARTSS-2 Barreto AD, et al. ²⁰⁶ 2017 28507269	Aim: To assess safety of argatroban as adjunct therapy in patients with AIS treated with alteplase Study Type: Randomized controlled trial Size: N=90	Inclusion criteria: AIS patients receiving IV alteplase within 4.5 h, age≥18 y, NIHSS≥10 or proximal LVO Exclusion criteria: • Planned EVT • Full listing in data supplement	Intervention: Argatroban (100 µg/kg bolus) followed by infusion of either 1 (low dose) (N=30) or 3 µg/kg per min (high dose) (n=31) for 48 h Comparator: No argatroban (n=29)	1° end point Probability of a clinical benefit (mRS 0–1 at 90 d) RR>1.0: • Low dose: 1.17 (0.57–2.37), 0.67 • High dose: 1.27 (0.63–2.53), 0.74 • Low + high dose: 1.34 (0.68–2.76), 0.79 Safety end point: Incidence of sICH: • Control: 3/29 (10%) • Low-dose: 4/30 (13%) • High-dose: 2/31 (7%) Probability RR>1.0: • Low dose: 1.55 (1.07–2.25), 0.99 • High dose: 1.73 (1.04–2.89), 0.98	Recanalization at 2–3 h, neurological improvement by NIHSS, QOL at 90 d: no clinically meaningful differences	No formal sample size estimation Study not powered to determine differences in end points Open label design	Supports the safety of adjunctive argatroban + IV alteplase at the doses assessed to proceed with a Phase III efficacy trial
Sandercock PA, et al. ¹⁹⁸ 2015 <u>25764172</u>	Aim: To assess the efficacy and safety of early AC in first 14 d from AIS	Inclusion criteria: Randomized trials of early AC started within 14	Intervention: UFH, LMWH, oral AC, thrombin	1° end point: Death or disability at the end of follow-up (8 trials, n=22,125): OR, 0.99 (95% CI, 0.93–1.04)	• Recurrent IS: OR, 0.76 (95% CI, 0.65–0.88)	Heterogeneity (intervention, stroke populations,	Supports current LOE

	Study Type: Cochrane review of randomized trials Size: N=23,748	d from onset of acute ischemic stroke (>90% trials AC started in first 48 h) Exclusion criteria: Non-randomization, no control group, confounded studies	inhibitors (n=11,613) Comparator: Control (n=11,613)	Safety end point : sICH: OR, 2.55 (95% CI, 1.95–3.33)	● PE: OR, 0.60 (95% CI, 0.44– 0.81) ■ Extracranial hemorrhage: OR, 2.99 (95% CI, 2.24–3.99)	intervention, follow-up) • No additional studies included since 2008 review	
Yi X, et al. ¹⁹⁹ 2014 24656240	Aim: To investigate the efficacy of LMWH compared to aspirin in preventing END in acute stroke patients Study Type: Unblinded RCT Size: N=1368 (2 Chinese hospitals)	Inclusion criteria: Age 18–85 y; diagnosis of ischemic stroke as defined by CT and MRI; LAA or SVD by TOAST criteria; symptoms of stroke <48 h before receiving the first dose of trial medication; presence of motor deficit as a result of acute stroke Exclusion criteria: • NIHSS score >15 • History of ICH; known	Intervention: Enoxaparin (40 mg, 4000 IU) started <48 h onset and continued for 10 d (n=683) Comparator: ASA (200 mg) started <48 h onset and continued for 10 d (n=685)	1° end point: END (≥4 pts on NIHSS) at 10 d after admission: END: LMWH, 27 (3.95%) vs. ASA, 81 (11.82%), P<0.001 Safety end point: Time to first bleeding event up to 90 d: no difference	• Early recurrent ischemic stroke, VTE, or myocardial infarction at 10 d after admission; 6 mo mRS (good outcome 0–2) • DVT: LMWH 10 (1.46%) vs. 29 (4.23%), P=0.003 • ERIS, MI: no difference • 6 mo mRS 0–2: LMWH 64.2% vs. ASA 6.52% P=0.33 • Symptomatic basilar artery - LMWH 41 (82.00%) vs. ASA 25	Unblinded Excluded cardioembolic etiologies Questionable generalizability	Does not add to current LOE

		contraindication for the use of LMWH or aspirin Patient on anticoagulation therapy before the onset of stroke; sustained hypertension (BP >200/110 mmHg) immediately before randomization Coexisting terminal disease or dementia, atrial fibrillation on ECG, chronic rheumatic heart disease, or metallic heart valve Thrombo-			(48.08%), P=0.001		
Whiteley WN, et	Aim: To investigate	cytopenia Inclusion	Intervention:	1° end point: Composite	Dead or	Results driven	Supports current
winteley win, et al. ¹⁹⁷ 2013 23642343	targeted heparinoids in AIS for patients at high risk of DVT and/or lower risk for hemorrhagic events Study Type: Metaanalysis of randomized trials Size: N=22,655	Inclusion criteria: Individual patient data from 5 randomized control trials: IST, TOAST, FISS-tris, HAEST, TAIST Exclusion criteria: n<100, non-	Intervention: UFH, heparinoid, LMWH (n=N/A) Comparator: ASA/placebo (n=N/A)	of thrombotic events within 14 d (any fatal or non-fatal pulmonary embolism, deep vein thrombosis, myocardial infarction, or recurrent ischemic stroke [not stroke extension alone): heparin vs. control ARR: 1.4% Safety end point: Composite of hemorrhagic events within 14 d (any	e Dead or dependent at 3– 6 mo (trial defined); predictive modeling to define parameters that might help target heparin regimen for specific patient groups (e.g., age, presence of	Results driven by IST (83% of outcomes, source of derivation set for predictive modeling) Models only modestly predictive for thrombotic and hemorrhagic events	LOE

		randomized, data not available (excluded 22 trials		recorded fatal or non-fatal intracranial hemorrhage, or extracranial hemorrhages that led to death, transfusion, or surgery: control vs. heparin ARR: 1.6%	atrial fibrillation, NIHSS) No group showed benefit of heparins over aspirin or placebo for the prevention of death or disability at the time of last follow-up	Generaliz- ability limited to stroke subtypes predominant in the included trials Heterogeneity between trials Trials identified from Cochrane review ³⁹⁷	
FISS-tris Study Wang Q, et al. ³⁹⁸ 2012 22893265 Wang QS, et al. ³⁹⁹ 2012 22076004	Aim: To investigate the efficacy of LMWH vs. ASA in patients with LAOD subgroups Study Type: Unblinded RCT Size: N=353 (11 hospitals Hong Kong, Singapore)	Inclusion criteria: Age 18–90 y; diagnosis of ischemic stroke and vascular imaging to confirm LAOD (intracranial and extracranial) Exclusion criteria: Patients with pre-existing disability (defined as prestroke mRS 1) and severe stroke (defined as a NIHSS 22)	Intervention: Nadroparin (3800 IU) started <48 h onset and continued for 10 d (n=180) Comparator: ASA (160 mg) started <48 h onset and continued for 10 d (n=173)	1° end point: • END at 10 d defined by progressive stroke, ERIS, sICH • "Progressive stroke" was defined as stroke events of END without evidence of ERIS or sICH: dichotomized Barthel Index 6 mo (good >85) END (progressive stroke) - LMWH better than ASA: (5.0% [9 of 180] vs. 12.7% [22 of 173]; OR, 0.36 [95% CI, 0.16–0.81]); no difference in ERIS or sICH 6 mo Barthel Index: >68 y (P=0.043; OR, 1.86 [95% CI, 1.02–3.41]); without ongoing antiplatelet treatment on admission (P=0.029; OR, 1.85 [95% CI, 1.06–3.21]), and with symptomatic posterior circulation arterial disease (P=0.001; OR, 5.76 [95% CI, 2.00–16.56])	mRS 0–2 at 6 mo LMWH better than ASA: >68, no antiplatelet on admission All other subgroups no difference	"Progressive stroke" poorly defined Different primary outcomes compared to main FISS-tris trial Exploratory subgroup analysis Questionable generalizability	Does not add to current LOE

Abbreviations: AC indicates anticoagulation; AIS, acute ischemic stroke; ARR, absolute risk reduction; ASA, acetylsalicylic acid; BP, blood pressure; CI, confidence interval; CT, computed tomography; DVT, deep vein thrombosis; ECG; electrocardiogram; END, early neurologic deterioration; ERIS, early recurrence of ischemic stroke; EVT, endovascular therapy; h, hours; IU, international units; IV, intravenous; LAA, large-artery atherosclerosis; LAOD, large artery occlusive disease; LMWH, low-molecular-weight heparin; LOE, level of evidence; LVO, large vessel occlusion; MI, myocardial infarction; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PE, pulmonary embolus; QOL, quality of life; RCT, randomized clinical trial; RR, relative risk; sICH, symptomatic intracerebral hemorrhage; SVD, small vessel disease; UFH, unfractionated heparin; VTE, venous thromboembolism, and y, years.

Literature search topic: Anticoagulation

Table XLVII. Nonrandomized Studies of Anticoagulation in Patients with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Wada T, et al. ²⁰⁰ 2016 26670085	Study type: Retrospective, observational Size: N=2289	Inclusion criteria: AIS in Japanese hospitals treated with argatroban Exclusion criteria: Age<40 y Pregnancy Pre-preexisting comorbidities of malignancy coagulopathy, preexisting atrial fibrillation Receipt of oral anticoagulants including warfarin and dabigatran during hospitalization Liver failure IV antihypertensive therapy or heparin on admission Alteplase or endovascular	1° end point: mRS at discharge (propensity matched) Results: OR, 1.01 (0.88–1.16) ICH 3.5% vs. 3.8%	Interpretation limited by generalizability and selection bias

Kate M, et al. ²⁰¹ 2015 26304866	Study type: Open- label, single-arm safety trial of dabigatran in AIS Size: N=53	therapy during hospitalization Inclusion criteria: TIA or stroke NIHSS≤3; dabigatran started <24 h LKW and continued for 30 d Exclusion criteria:	1° end point: sICH Results: 0% sICH	Dabigatran appears safe in AIS with minor stroke or TIA and provides preliminary data for a larger randomized trial
RAF Study Paciaroni M, et	Study type: Prospective cohort	GFR<30, alteplase or EVT, clear indication for AC Inclusion criteria: Known or newly	1° end point: Composite stroke, TIA, systemic embolism, sICH, major extracranial bleeding within 90 d	Initiating AC 4–14 d from stroke onset in patients with atrial
al. ²⁰² 2015 <u>26130094</u>	Size: N=1029 (multicenter Europe and Asia)	diagnosed atrial fibrillation Exclusion criteria: Contraindication to AC	Results: • 12.6% primary outcome • HR, 0.53 (0.30–0.93) starting AC 4–14 d compared to <4 d	fibrillation had better outcomes • High CHA ₂ DS ₂ -VASc, NIHSS, large ischemic lesions, and type of AC associated with composite outcome • Study limited by non-randomization
Mokin M, et al. ²⁰³ 2013 22345142	Study type: Retrospective, observational Size: N=18	Inclusion criteria: Non-occlusive intraluminal thrombus of intracranial and extracranial arteries confirmed by CTA, treated with IV heparin Exclusion criteria: alteplase or EVT	1° end point: Follow-up recanalization (range treatment 1–8 d) Results: 9 pts complete, 9 pts partial No ICH	Numbers too small to draw any meaningful conclusions; short duration of treatment and follow-up
Vellimana AK, et al. ²⁰⁴ 2013 <u>23061393</u>	Study type: Retrospective, observational Size: N=24	Inclusion criteria: TIA or stroke, intraluminal thrombus CCA, ICA treated with AC	1° end point: Recurrent ischemic events; TIA Results: No recurrent ischemic events; one TIA (mean follow-up 16.4 mo	Numbers too small to draw any meaningful conclusions; 10 patients underwent delayed revascularization

		Exclusion criteria: Intracranial thrombus, trauma/dissection, ipsilateral CAS, ICH		
ARTSS-1 Barreto AD, et al. ²⁰⁵ 2012 22223235	Study type: Open- label, pilot safety study of argatroban infusion + IV alteplase Size: N=65	Inclusion criteria: Age 18–65 y, <3 to 4.5 h LKW, complete or partially occlusive thrombus on TCD, eligible for IV alteplase	1° end point: sICH or PH-2 Results: • 6.2% sICH • TCD recanalization 61%	Argatroban infusion + IV alteplase potentially safe and feasible for Phase III trial
		Exclusion criteria: NIHSS >17 right MCA, >22 left MCA		

Abbreviations: AC indicates anticoagulation; CAS, carotid artery stenting; CI, confidence interval; CCA, common carotid artery; CTA, computed tomography angiography; EVT, endovascular therapy; HR, hazard ratio; ICA, internal carotid artery; IV, intravenous; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; LKW, last known well; sICH, symptomatic intracerebral hemorrhage; MCA, middle cerebral artery; PH-2, parenchymal hematoma type 2; TIA, transient ischemic attack; and TCD, transcranial Doppler. Literature search topic: Anticoagulation

Table XLVIII. Randomized Clinical Trials Comparing Other Treatments for Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ALIAS Martin RH, et al. ²¹⁰ 2016 (Parts I & II	Aim: To determine the safety and efficacy of albumin infusion in AIS Study Type:	*Combined dataset from ALIAS Parts I & II trials	Intervention: 25% albumin infusion (2 g/kg) (n=637)	1° end point: 90 d disability (proportion of favorable outcomes defined by mRS 0–1, NIHSS 0–1, or both):	Secondary efficacy, death (30 & 90 d), ICH within 24 h: no differences	Part I stopped early for safety; Part II stopped early for futility; saline group in	High-dose albumin is not recommended
combined data) 27462118 Ginsberg MD, et al. ²⁰⁹ 2013 (Part II) 24076337	Randomized, double- blinded, placebo- controlled trial Size: N=1275 combined (NETT)	Inclusion criteria: AIS, age 18–83 y, NIHSS>6, initiation of infusion within 5 h LKW and	Comparator: Saline placebo (1:1) (n=638)	Combined: proportion of good outcomes identical (41%) between groups Part II: RR, 0.96 (0.84–1.10)	between groups	Part II did better than expected, stratified randomization by thrombolysis; differences in alteplase rates	

		within 90 min of alteplase (if treated) Exclusion criteria: CHF or other cardiac/systemic conditions exacerbated by volume expansion; numerous other exclusions listed ²⁰⁹		Safety end point: CHF, pulmonary edema within 48 h: CHF within 48 h: RR, 7.76 (3.87–15.57) (combined)		and age between Parts I & II	
FAST-MAG, Saver JL, et al. ⁴⁰⁰ 2015 <u>25651247</u>	Aim: To determine the efficacy of magnesium infusion, initiated early, on stroke outcomes Study Type: Randomized, doubleblind, placebo-controlled trial Size: N=1700 (multiple CA sites)	Inclusion criteria: Age 40–95 y, + LAPSS, treatment initiation within 2 h LKW, deficit >15 min Exclusion criteria: Patient unable to provide informed consent or enrollment under EFIC; otherwise standard exclusions (NEJM appendix)	Intervention: Magnesium sulfate 4 g bolus + 16 g infusion × 24 h (n=857) Comparator: Placebo (n=843)	1° end point: 90 d disability (shift in mRS): no significant shift (<i>P</i> =0.28) Safety end point: 90 d: Mortality (<i>P</i> =0.95); sICH (<i>P</i> =0.12), SAEs (<i>P</i> =0.67)	NIHSS, Barthel Index, GOS: no differences SAEs, sICH, death: no differences	Long enrollment period Higher ICH rate than predicted (22%) 4% mimic rate 33%–38% alteplase treatment rate in eligible patients	Magnesium infusion is not recommended

Chang TS and Jensen MB ²⁰⁸ 2014 25159027	Aim: To assess the effects of hemodilution in AIS Study Type: Cochrane review Size: N=4174 (21 trials)	Inclusion criteria: Randomized trials of hemodilution treatment in AIS, treatment started w/in 72 h Exclusion criteria: No details of intervention, incomplete outcomes data, no control group, lack of randomization	Intervention: Plasma volume expansion vs (plasma, dextran 40, HES, albumin, ± venesection) Comparator: Control	1° end point: Death or dependency at 3-6 mo: risk ratio: 0.96 (95% CI, 0.85–1.07) Safety end point: Serious cardiac events: Overview analysis (OR, 0.99; 95% CI, 0.66–1.50)	Early and late mortality, venous thromboembolic events, serious cardiac events, anaphylactoid reactions: no significant differences in secondary outcomes Cardiac events at 3–6 mo, OR, 0.99 (0.66–1.50)	Heterogeneity, isovolemic vs. hypervolemic intervention Risk of bias Treatment effect (reduced HCT) delayed >6 h in most participants Small numbers to assess some interventions (e.g., HES)	Hemodilution is not recommended

Abbreviations: ADL indicates activities of daily living; AlS, acute ischemic stroke; ATA, arterial transit artifact; CHF, chronic heart failure; CI, confidence interval; CT, computed tomography; EVT, endovascular therapy; g, gram; GOS, Glasgow Outcome Scale; h, hours; HCT, hematocrit; HES, hydroxyethyl starch; ICH, intracranial hemorrhage; LAPSS, Los Angeles Prehospital Stroke Screen; LKW, last known well; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; OTT, onset to treatment; RCT, randomized clinical trial; RR, relative risk; SAE, serious adverse event; sICH, symptomatic intracranial hemorrhage; TLT, transcranial laser therapy; and y, years.

Literature search topic: Neuroprotection

Table XLIX. Randomized Clinical Trials Comparing Transcranial Laser Therapy for Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
NEST-3 Hacke W, et al. 401 2014 25293665	Aim: To investigate benefit of TLT for acute ischemic stroke Study type: Prospective randomized clinical trial Size: N=1000	Inclusion criteria: Ischemic stroke within 24 h, NIHSS 7–17, ≤80 y Exclusion criteria: IV alteplase	Intervention: Transcranial laser therapy (TLT) between 4.5–24 h of stroke onset (n=288) Comparator: Sham TLT (n=288)	1° end point: Disability 90 d mRS (success 0–2, failure 3–6) Safety end point: N/A	N/A	Potential non- standardization of TLT between animal models and human trials (not taking skull thickness into account)	Terminated due to futility; analysis after 566 subjects No benefit of NILT over sham procedure Terminated after inclusion of 2/3 of planned patient number

Abbreviations: h indicates hours; IV, intravenous; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NILT, near infrared laser therapy; OR, odds ratio; TLT, transcranial laser therapy; y, year.

Literature search topic: Transcranial laser therapy AND transcranial near-infrared laser therapy

Table L. Randomized Clinical Trials Comparing Early Versus Delayed Initiation of Treatment for Blood Pressure Reduction in Patients with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ENOS ENOS Trial Investigators ²²⁸ 2015 25465108	Aim: To assess the efficacy and safety of BP reduction with transdermal glyceryl nitrate within 48 h of an acute stroke	Inclusion criteria: • Acute ischemic stroke (or ICH) within previous 48 h	Intervention: Transdermal glyceryl nitrate 5 mg/d for 7 d (n=2000)	1° end point: mRS distribution at 90 d: OR for worse outcome: 1.01 (95% CI, 0.91–1.13; P=0.83) for the active arm	90-d Barthel Index, mini- mental state score, HRQOL, and depression	Subset of patients previously on antihypertensive s were also randomized to	Early treatment of hypertension with transdermal glyceryl nitrate was safe but

	Study type: RCT Size: N=4011	SBP 140-220 mmHg Exclusion criteria: Coma Minor stroke Hypertensive emergency SBP>220 mmHg Premorbid disability	Comparator: Placebo (n=2011)	Safety end points: All cause-mortality, early neurological decline, recurrent stroke within 7 d, symptomatic hypotension, and serious systemic events: <i>P</i> >0.1 for all comparisons	score: P>0.1 for all comparisons • Post-hoc subgroup analysis (Woodhouse et al. 2015) of patients started on treatment within 6 h of stroke onset (N=273) showed benefit (improved mRS at 90 d on ordinal shift analysis) from the intervention: common OR: 0.51 (95% CI: 0.32–0.80)	continue (n=1053) or stop (n=1044) those drugs: there were no differences in the comparison of those two groups either (OR, 1.05; 95% CI, 0.90–1.22; P=0.55) • Results were similar when the analysis was restricted to patients with ischemic stroke	ineffective to prevent death or dependency • Early reinitiation of antihypertensive s was ineffective to prevent death or dependency • Treatment within 6 h was safe and may be beneficial to improve functional outcomes
Lee M, et al. ²²⁹ 2015 26022636	Aim: Assess the effect of BP reduction within 72 h of an acute ischemic stroke on functional outcomes at 3 mo Study type: Meta-analysis of RCTs Size: N=12,703 (13 trials)	Inclusion criteria: As per individual trials; only including acute ischemic stroke Exclusion criteria: As per individual trials	Intervention: Treatment started for BP reduction within the first 72 h (n=6392) Comparator: No new treatment started for BP reduction within the first 72 h (n=6311)	1° end point: Death or dependency (mRS 3–6) at 90 d: RR, 1.04 (95% CI, 0.96–1.13; <i>P</i> =0.35) Safety end point: Serious adverse events (as per each trial definition): <i>P</i> >0.05 for all comparisons	Recurrent vascular events, all-cause mortality, disability, recurrent stroke: P>0.05 for all comparisons	Heterogeneity across trials	Early BP reduction was safe but ineffective to prevent death or dependency
VENTURE Oh M, et al. ²²⁷ 2015 25580869	Aim: To assess the efficacy and safety of modest blood pressure reduction with valsartan within 48 h after symptom	Inclusion criteria: • Acute ischemic stroke	Intervention: Oral valsartan 80 mg/d for 7 d (n=195)	1° end point: Death or major disability (mRS 3–6) at 90 d: OR, 1.11; 95% CI, 0.69–1.79; <i>P</i> =0.667	Major vascular events within 90 d: OR, 1.41; 95% CI, 0.44– 4.49; <i>P</i> =0.771	Early termination due to futility determined on interim analysis	Early reduction of BP with valsartan did not reduce death or dependency and

	onset in patients with acute ischemic stroke and high BP Study type: RCT Size: N=393	within previous 48 h • SBP 150–185 mmHg Exclusion criteria: • Impaired level of consciousness • NIHSS ≥22 • Pre-existent disability • Coexistent vascular emergency • Severe comorbidities	Comparator: Placebo (n=198)	Safety end point: Early neurological deterioration (within 7 d): OR, 2.43; 95% CI, 1.25–4.73; P=0.008		(target size=289 per group)	major vascular events at 90 d but increased the risk of early neurological deterioration
COCHRANE Bath PM and Krishnan K ²²⁶ 2014 25353321	Aim: To assess the clinical effectiveness of altering blood pressure in people with acute stroke, and the effect of different vasoactive drugs on blood pressure in acute stroke Study type: Metaanalysis of RCTs Size: N=17,011 (from 26 trials)	Inclusion criteria: • As per individual trials • In acute ischemic stroke and ICH • Age ≥18 y Exclusion criteria: As per individual trials	Intervention: Treatment started for BP reduction within the acute phase (n=8497) Comparator: No new treatment started for BP reduction within the acute phase (n=8514)	1° end point: • Death or dependency (mRS >2 or 3) ≥ 1 mo after the stroke: OR, 0.98; 95% CI, 0.92-1.05 • Blood pressure lowering did not reduce death or dependency either by drug class (OR, 0.98; 95% CI, 0.92–1.05), stroke type (OR, 0.98; 95% CI, 0.92–1.05), or time to treatment (OR, 0.98; 95% CI, 0.92–1.05) Safety end points: Early neurological decline: OR, 1.07; 95% CI, 0.92–1.24	Treatment within 6 h of stroke appeared effective in reducing death or dependency (OR: 0.86, 95% CI: 0.76–0.99) but not death (OR: 0.70, 95% CI: 0.38–1.26) by the end of the trial	Great heterogeneity across included trials	Early treatment of hypertension was safe but ineffective to prevent death or dependency

CATIS He J, et al. ²²⁵ 2014 24240777	Aim: Evaluate whether immediate blood pressure reduction in patients with acute ischemic stroke would reduce death and major disability at 14 d or hospital discharge Study type: RCT Size: N=4071	Inclusion criteria: Age >22 y Acute ischemic stroke within previous 24 h Exclusion criteria: Impaired level of consciousness Hypertensive emergency BP >220/120 Atrial fibrillation Intravenous alteplase	Intervention: Antihypertensive medication to maintain BP <140/90 for the first wk (n=2038) Comparator: No antihypertensive medication for the first wk (n=2033)	1° end point: Death or major disability (mRS 3–6) at 14 d: OR, 1.0 (95% CI, 0.88–1.14; P=0.98) Safety end point: Vascular disease events P=0.28 Recurrent stroke P=0.07	• Death or major disability (mRS 3–5) at 90 d: OR, 0.99 (95% CI, 0.86–1.15; P=0.93) • Lower blood pressure at 14 d (mean difference of -8.6 mmHg in SBP and -3.9 mmHg in DBP; P<0.001) and at 90 d (mean difference of -2.9 mmHg in SBP and -1.4 mmHg in DBP; P<0.001) in the active arm	Antihypertensive regimen was not standardized	Early treatment of hypertension was safe but ineffective to prevent death or dependency Early initiation of antihypertensives was associated with better BP control at 2 wk
SCAST Sandset EC, et al. ²²⁴ 2011 <u>21316752</u>	Aim: Examine whether blood-pressure lowering treatment candesartan is beneficial in patients with acute stroke and hypertension Study type: RCT Size: N=2029	Inclusion criteria: Acute ischemic stroke (or ICH) within previous 30 h SBP >140 mmHg Age >18 y Exclusion criteria: Impaired level of consciousness Hypertensive emergency	Intervention: Candesartan 4– 16 mg/d for 7 d (n=1017) Comparator: Placebo (n=1004)	1° end point: • mRS at 6 mo: OR for worse outcome: 1.17 (95% CI, 1.00–1.38; P=0.048) • Vascular death or MI or recurrent stroke within 6 mo: HR, 1.09 (95% CI, 0.84–1.41; P=0.52) Safety end point: • Stroke progression: RR, 1.47 in favor of placebo; 95% CI, 1.01–2.13; P=0.04 • Symptomatic hypotension: no difference; P=0.29	Death from any cause, vascular death, ischemic stroke, hemorrhagic stroke, MI, stroke score, and Barthel Index at 7 d and 6 mo: P>0.1 for all comparisons	Mean BPs were similar in both groups after the first 7 d	Early initiation of candesartan was safe but ineffective to prevent death or dependency

		Premorbid disability		• Renal failure: no difference; <i>P</i> =0.37			
COSSACS Robinson TG, et al. ²²³ 2010 20621562	Aim: Assess the efficacy and safety of continuing or stopping pre-existing antihypertensive drugs in patients with acute stroke Study type: RCT Size: N=763	Inclusion criteria: Acute ischemic stroke (or ICH) within previous 48 h Exclusion criteria: Impaired level of consciousness Unable to swallow Hypertensive emergency BP >200/120 mmHg Premorbid disability Intravenous alteplase	Intervention: Continue previous antihypertensive medication/s (n=379) Comparator: Stop previous antihypertensive medication/s (n=384)	1° end point: Death or major disability (mRS 3–6) at 14 d: RR, 0.86 (95% CI, 0.65–1.14; <i>P</i> =0.3) Safety end point: Adverse events, minor and serious: <i>P</i> >0.05 for all	• 2-week NIHSS: P=0.46 and 2-week Barthel Index: P=0.30 • 2-week BP: significantly lower in the continue arm (mean difference of -13 mmHg in SBP and -8 mmHg in DBP) P<0.0001 • 6-month mortality: P=0.98; 6-month disability P<0.05	Trial was terminated early because of slow recruitment, and consequently it was underpowered Treatment was not homogeneous (different drugs, no specific BP target) No differences when analysis restricted to patients with ischemic stroke	Early reinitiation of antihypertensive medications was safe but ineffective to prevent death or dependency Early reinitiation of antihypertensive s was associated with better BP control at 2 wk
PROFESS Bath PM, et al. ²²¹ 2009 19797187	Aim: Assess the safety and efficacy of lowering blood pressure with telmisartan (on top of standard poststroke antihypertensive treatment) in patients with acute ischemic stroke Study type: RCT Size: N=1360	Inclusion criteria: • Age >55 or 50–54 y with multiple vascular risk factors • Acute ischemic hemispheric stroke within 72 h of onset Exclusion criteria:	Intervention: Oral telmisartan 80 mg/d (n=647) Comparator: Placebo (n=713)	1° end point: Death or dependency at 30 d: OR, 1.03; 95% CI, 0.84–1.26; P=0.81 Safety end point: Serious adverse events: P>0.05	Death or dependency at 7 and 90 d: P>0.05 Composite recurrent vascular events at 90 d: P=0.40 Mini-Mental State Examination at 90 d: P>0.05	 Pre-specified analysis of a larger trial with factorial design Trial evaluated mild strokes (mean NIHSS=3) 	Early treatment of hypertension with telmisartan was safe but ineffective to prevent death or dependency

CHHIPS Potter JF, et al. ²²² 2009 19058760	Aim: Assess the feasibility, safety, and effects of two regimens for lowering blood pressure in patients with acute stroke Study type: RCT Size: N=179	Inability to swallow Pre-existent disability Renal failure or renal artery stenosis Hyperkalemia Recent myocardial infarction or severe coronary artery disease Inclusion criteria: Acute ischemic stroke (or ICH) within previous 36 h SBP >160 mmHg Exclusion criteria: Coma Hypertensive emergency BP >200/120 mmHg Premorbid disability	Intervention: Labetalol (n=58) or lisinopril (n=58), titrated to keep SBP <160 mmHg for 2 wk Comparator: Placebo (n=63)	1° end points: Death or major disability (mRS 3–6) at 14 d: RR, 1.03, 95% CI, 0.80–1.33; P=0.82 Safety end point: • Early neurological decline: RR, 1.22; 95% CI, 0.33–4.54; P=0.76 • Serious systemic adverse events: RR, 0.91; 95% CI, 0.69–1.12; P=0.50	Mortality at 3 mo lower in active arm (9.7% vs. 20.3%, HR: 0.40 (95% CI: 0.2–1.0; <i>P</i> =0.05)	Pilot trial with small sample size	Early treatment of hypertension was safe but ineffective to prevent death or dependency
Eveson DJ, et al. ²²⁰ 2007 17324738	Aim: Explore the hemodynamic effect and safety of oral lisinopril initiated within 24 h after an acute stroke	Inclusion criteria: • Acute ischemic stroke within 24 h of onset	Intervention: Oral lisinopril 5– 10 mg for 14 d (n=18) Comparator: Placebo (n=22)	1° end point: Functional outcomes at 3 mo: <i>P</i> =0.7 Safety end point: • Excessive drop in BP: <i>P</i> >0.05	N/A	Single center Designed to evaluate safety	Early initiation of lisinopril was safe

	Study type: RCT (phase	• SBP >140		Doubling in serum			
	II)	mmHg or DBP		creatinine concentration:			
	"/	>90 mmHg		<i>P</i> >0.05			
	Size: N=40	>30 mining		1 > 0.03			
	Olze: IV-40	Exclusion					
		criteria:					
		• Coma					
		Re-existent					
		disability					
		Inability to					
		swallow					
		Severe carotid					
		stenosis					
		 Advanced 					
		heart failure					
		Acute					
		myocardial					
		infarction within					
		6 mo					
		 Severe aortic 					
		stenosis					
ACCESS	Aim: Assess the safety of	Inclusion	Intervention:	1° end points: Barthel	 Combined 	 Terminated 	 Early initiation
Schrader J, et	modest blood pressure	criteria:	Oral	Index at 3 mo: 87.0±22.9	mortality,	early (planned	of oral
al. ²¹⁹	reduction in the early	 Age 18–85 y 	candesartan 4-	vs. 88.9±19.9; <i>P</i> >0.05	cerebrovascular	size 500)	candesartan
2003	treatment of stroke	Acute	16 mg/d titrated		and	 Designed to 	was safe but not
<u>12817109</u>		ischemic	to keep BP	Safety end point:	cardiovascular	evaluate safety	associated with
	Study type: RCT (phase	hemispheric	<160/100 for 7 d	Cerebral complications	events at 12 mo:	,	reduction in
	II)	stroke within 36	(n=173)	at 7 d: <i>P</i> >0.05	OR, 0.475 (95%		disability.
	,	h of onset	,	Cardiac complications at	CI, 0.252-0.895)		• Oral
	Size : N=339	Severe	Comparator:	7 d: <i>P</i> >0.05	• BP at 3, 6, and		candesartan
		hypertension	Placebo (n=166)		12 mo: <i>P</i> >0.05		was associated
		(SBP ≥200					with reduced
		mmHg or DBP					rates of mortality
		≥110 mmHg					and
		within 6–24 h					cardiovascular
		after admission,					events at 12 mo
		or SBP ≥180					despite similar
		mmHg or DBP					long-term
		≥105 mmHg					control of BP

Kaste M, et al. ²¹⁶ 1994 8023348	Aim: Determine the safety and efficacy of nimodipine on the functional outcome of acute ischemic stroke Study type: RCT Size: N=350	Inclusion criteria: • Age 16–69 y • Acute ischemic hemispheric stroke within 48 h of onset Exclusion criteria: • Coma • TIA • Severe comorbidity	Intervention: Nimodipine 120 mg/d for 21 d (n=174) Comparator: Placebo (n=176)	1° end points: All at 12 mo: • Rankin score: scores 1–2 in 96 patients of both groups (<i>P</i> >0.5) • Neurological score: median 28 vs. 25 (<i>P</i> >0.5) • Mobility: unaided in 117 vs. 126 patients (<i>P</i> >0.5) Safety end point: None specified	Functional outcome at 3 mo, mortality at 3 and 12 mo, and residence at 12 mo: all <i>P</i> >0.5	Study rationale was based on presumed neuroprotective effect of nimodipine rather than solely its antihypertensive effect	No functional benefit from the early initiation of antihypertensive therapy with nimodipine Greater fatality rates on the nimodipine arm during the first 3 mo
INWEST Wahlgren NG, et al. ²¹⁷ 1994 Link to article	Aim: Determine the safety and efficacy of nimodipine on the functional outcome of acute ischemic stroke Study type: RCT Size: N=295	Inclusion criteria: • Age ≥40 y • Acute ischemic stroke in carotid territory within 24 h of onset • Stable hemiparesis Exclusion criteria: • Coma • Pre-existent disability • Unstable cardiac disease • Severe comorbidity	Intervention: Intravenous nimodipine 1 mg/h (n=101) or 2 mg/h (n=94) for 5 d followed by oral nimodipine 30 mg four times/d for 16 d Comparator: Placebo (n=100)	1° end points: Neurological outcome by the Orgogozo scale at 21 d: significantly worse in the 2 mg/h nimodipine arm (P=0.0005) Functional outcome by Barthel Index at 21 d: significantly worse in the 2 mg/h nimodipine arm (P=0.0033) Safety end point: Mortality: P>0.1	Neurological outcome by the Orgogozo and Mathew scales and functional outcome by Barthel Index at 12 and 24 wk: all markedly worse in the 2 mg/h nimodipine arm (<i>P</i> <0.001)	●Study rationale was based on presumed neuroprotective effect of nimodipine rather than solely its antihypertensive effect ● Trial terminated early because of worse outcomes in the high-dose active arm (planned size=600 patients) ● Trial terminated early because of futility determined in an interim analysis (planned	Early IV nimodipine was associated with worse outcomes after acute ischemic stroke in a dose- dependent manner

			size=1500 patients)	

Abbreviations: BP, blood pressure; CI, confidence interval; DBP, diastolic blood pressure; h, hour; HR, hazard ratio; HRQOL, health-related quality of life; ICH, intracerebral hemorrhage; IV, intravenous; MI, myocardial infarction; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; RCT, randomized clinical trial; RR, relative risk; SBP, systolic blood pressure; and y, year.

Literature search topic: Blood pressure II

Table LI. Randomized Clinical Trials of Dysphagia Screening

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Rai N, et al. ²³¹ 2016 26954966	Aim: To test whether patients randomized to an evidence-based care pathway, compared to conventional care, would be less likely to be dead or dependent at 90 d Study type: Cluster randomized controlled trial Size: N=162 (2 wards)	Inclusion criteria: • Age ≥18 y • Acute ischemic or hemorrhagic stroke • Admitted to the neurology wards within the first 72 h of symptom onset Exclusion criteria: Subarachnoid hemorrhage	Intervention: • CP (n=77) consisted of nurse education, care checklist, swallow assessment flow chart, swallow screen, patient and caregiver education • The swallow screen was culturally adapted to local food habits, and administered by a resident physician	1° end point: • Aspiration pneumonia during hospital stay: CP 6.5% (5/77) vs.CC 15.3% (13/85) (RR, 0.42; 95% CI, 0.93–7.14; P=0.06); adjusted OR, 0.33 (95% CI, 0.09-1.22; P=0.10) • Mechanical ventilation during hospital stay: CP 7.8% vs. CC 17.6% (OR, 0.39; 95% CI, 0.14–1.07; P=0.05)	2° end points: • All-cause mortality at 90 d: CP 7.8% (6/77) vs. CC 20% (17/85), P=0.02 (adjusted OR, 0.33 [95% CI, 0.12–0.90]; P=0.03) • mRS ≤2 at 90 d: CP 57.1% (44/77) vs. CC 57.6% (49/85), P=0.86 • Barthel Index >60: CP 64.9% (50/77) vs. CC 65.4% (53/85), P=0.54 • Length of stay: CP 7 d	 Small sample size Not blinded Excess deep intracerebral hemorrhage patients in conventional care arm 	The stroke care pathway reduced the incidence of aspiration pneumonia, the need for mechanical ventilation, and the risk of death, when assessed at a follow-up of 90 d

Miles A, et al. ²³³ 2013 23671548	Aim: To determine if the addition of a cough reflex test to standard clinical swallowing evaluation would improve dysphagia detection leading to reduced pneumonia rates for acute stroke patients Study type: Randomized controlled trial Size: N=311	Inclusion criteria: • Acute stroke • Referred to speech- language pathology for swallowing assessment Exclusion criteria: Requested palliative swallowing advice rather than active treatment	Comparator: CC (n=85) based on existing ward practices; feeding started based on physician judgment Intervention: Clinical swallowing evaluation + cough reflex testing (n=148) Comparator: Clinical swallowing evaluation (n=163)	1° end point (90-day): Confirmed pneumonia: 26% (38/148) vs. 21% (35/163), adjusted OR, 1.7 (95% CI, 0.9–3.0; <i>P</i> =0.38) Safety end point: Not reported	(total range: 3–19) vs. CC 7 d (total range: 3–15) 2° end point (90-day): • Readmission for pneumonia: 4.7% (7/148) vs. 2.5% (4/163), P=0.28 • All-cause mortality: 14% (20/148) vs. 20% (32/163), adjusted OR, 0.7 (95% CI, 0.4–1.3; P=0.23) • Length of stay, acute ward: 7 d (IQR: 5–12) (n=148) vs. 6 d (IQR: 4.5–11.5) (n=163), P=0.58	Lack of clinical pathway dictating actions based on test results Clinician variability in management of dysphagic patients Groups well balanced at baseline on measured characteristics, but no assessment of stroke severity	Although clinical diet choices were influenced by results of the cough reflex test, patient outcomes were not different
QASC Middleton S, et al. ²³² 2011 21996470	Aim: To assess the effect of multidisciplinary team building workshops and a standardized interactive education program to implement evidence-based treatment protocols for the management of fever, hyperglycemia, and	Inclusion criteria: • Spoke English • Aged ≥18 y • Ischemic stroke or intracerebral hemorrhage	Intervention: • Fever, Sugar, Swallowing intervention (10 units, n=626) consisted of protocols, workshops, site visits, and	1° end point: • Death and dependency (mRS ≥2): 42% (236/558) vs. 58% (259/449), RD: 15.7 (95% CI, 5.8–25.4; P=0.002) • Barthel Index ≥60: 92% (487/532) vs. 90%	2° end points (90-day): • All-cause mortality: 3.7% (21/558) vs. 5.3% (24/451), P=0.36 • Aspiration pneumonia:	Severe strokes under- represented because patients admitted for	Implementing evidence-based protocols for better nursing management of fever, hyperglycemia, and swallowing

swallowing dysfunction on patient outcomes 90 d after admission for stroke Study type: Cluster randomized controlled trial Size: N=1126 (19 stroke units)	Presented within 48 h of onset of symptoms to a participating acute stroke unit Exclusion criteria: Did not have a telephone Admitted for palliative care	email/telephone support Swallowing component: nurses trained to use ASSIST screening tool via in-service by speech pathologist, and required to pass competency exam Comparator: Abridged version of existing guidelines (9 units, n=500)	(380/423), RD, 2.5 (95% CI, -3.6 to 8.6; <i>P</i> =0.44) • Barthel Index ≥95 units: 69% (367/532) vs. 60% (254/423), RD, 9.5 (95% CI, -0.5 to 19.5, <i>P</i> =0.07) • Mean SF-36 physical health: 45.6 (SD, 10.2) vs. 42.5 (SD, 10.5); <i>P</i> =0.002 • Mean SF-36 mental health: 49.5 (10.9) vs. 49.4 (10.6); <i>P</i> =0.69 Safety end point: Not reported	2.1% (13/603) vs. 2.7% (13/483), P=0.82 • Attrition: 10.9% (68/626) vs. 9.8% (49/500) • Length of stay: 11.3 d (10.3) (n=603) vs. 13.7 d (12.7) (n=483), P=0.14	palliation were excluded • Limited to patients admitted to a stroke unit, and may not apply to patients admitted to other units	dysfunction within 72 h of admission reduces death and dependency but not mortality
---	--	--	---	---	--	---

Abbreviations: ASSIST indicates Acute Screening of Swallow in Stroke/TIA; CC, conventional care; CI, confidence interval; CP, evidence-based care pathway; h, hour; IQR, interquartile range; OR, odds ratio; RD, relative difference; RR, risk ratio; SF-36, 36-Item Short Form Survey; and y, year.

Literature search topic: Dysphagia screening

Table LII. Nonrandomized Trials, Observational Studies, and/or Registries of Dysphagia Screening

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Joundi RA, et	Study Type:	Inclusion Criteria:	1° endpoint:	Failing dysphagia screening was
al. ²³⁴ 2017	Registry	Hospitalized with acute ischemic stroke	The primary outcomes were	associated with poor outcomes,
<u>28275200</u>	Size: 7171 patients, 6677 patients were eligible to receive dysphagia screening within 72	between April 1, 2010, and March 31, 2013.	 (1) in-hospital pneumonia (all-cause), radiographically confirmed within 30 days of hospitalization; (2) severe disability at discharge (modified Rankin Scale score 4–5); and (3) all-cause mortality at 1 year after the index event. 	including in patients with mild strokes, highlighting the importance of dysphagia screening for all patients with acute ischemic stroke.
	hours		Secondary outcomes included	

Patients with in-	(1) aspiration pneumonia within 30 days of the index event;	
hospital stroke, age	(2) development of decubitus ulcer, gastrointestinal	
<18 years, transient	hemorrhage,	
ischemic attack,	or myocardial infarction within the first 30 days of	
hemorrhagic stroke,	hospitalization;	
and time from stroke	(3) placement of a percutaneous feeding tube during the	
onset to hospital	index hospitalization (underwent procedure for insertion of	
arrival >72 hours.	gastrostomy or jejunostomy); and (4) discharge to long-term	
	care.	
	Results	
	Failing dysphagia screening was associated with poor	
	outcomes, including pneumonia (adjusted OR,	
	4.71; 95% CI, 3.43–6.47), severe disability (adjusted OR,	
	5.19; 95% CI, 4.48–6.02), discharge to long-term care	
	(adjusted OR, 2.79; 95% CI, 2.11–3.79), and 1-year mortality	
	(adjusted HR, 2.42; 95% CI, 2.09–2.80).	

Abbreviations: CI indicates confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; and RR, relative risk.

Literature search topic: Dysphagia screening

Table LIII. Randomized Clinical Trials of Nutrition

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point	Study Limitations; Adverse Events	Summary Conclusions Comments
Geeganage C, et al. ²³⁶ 2012 23076886	Aim: To assess the effectiveness of interventions for treatment of dysphagia and nutritional and fluid supplementation in patients with acute and subacute (within 6 mo from onset) stroke	Inclusion criteria: Participants recruited with a clinical diagnosis of stroke within 6 mo	Intervention: Interventions for dysphagia; feeding strategies and timing (early – within 7 d) vs. later); fluid supplementation; swallowing	1° end point: Functional outcome: death or dependency, or death or disability, at the end of the trial; results related to PEG vs. NG supplemental feeding: • PEG was associated with fewer treatment failures (t=3; n=72; OR,	Case fatality at the end of the trial Neurological deterioration within 4 wk Late disability or dependency at the end of the trial	The Cochrane Collaborative assessed the risk of bias in the included trials using the "Risk of Review of Intervention"; the assessment included:	• Continues to be insufficient data on the effect of swallowing therapy, feeding, and nutritional and fluid supplementation on functional

	Study type: Cochrane review RCT Size: N=6779 participants (33 studies)	Exclusion criteria: Studies with no control group, not randomized, or no relevant outcome data available	therapy (n=967), feeding (route, timing, supplementation (n=5812) Comparator: N/A in review	0.09; 95% CI, 0.01–0.51; P=0.0007; 1²=0% • PEG was associated with fewer GI bleeding events (t=1; n=321; OR, 0.25%; 95% CI, 0.09–0.69; P=0.0007) • PEG was associated with higher feed delivery (t=1; n=30; MD=22.00; 95% CI, 16.15–27.85; P<0.000001) • PEG was associated with fewer pressure sores (t=1; n=321; OR, 3.10; 95% CI, 0.98–9.83; P=0.05) • PEG and NG tube feeding did not differ for end-of-trial case fatality (t=5; n=455; OR, 0.81; 95% CI, 0.42–1.56) Safety end point: N/A	Proportions with dysphagia at the end of the trial Improvement in dysphagia	sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcomes assessment, incomplete outcome data, and selective outcome reporting	outcome and death in dysphagic patients with acute stroke Behavioral interventions and acupuncture reduced dysphagia PEG reduced treatment failures and gastrointestinal bleeding, and had higher feed delivery and albumin concentration Reduced pressure sores was associated with nutritional supplementation
FOOD Trial Collaboration Dennis M, et al. ²³⁵ 2006 16409880	Aim: To determine whether routine oral nutritional supplementation of a normal hospital diet improves outcome after stroke Study type: RCT – three pragmatic multicenter randomized Size: N=5033 patients (131 hospitals in 18 countries)	Inclusion criteria: Stroke patients with dysphagia Exclusion criteria: SAH, TIA, coma patients; or patients already entered into the same FOOD Trial	Trial 1 Intervention: Normal hospital diet (n=2007) Comparator: Normal hospital diet plus oral nutritional supplements (equivalent to 360 ml of 1.5 kcal/ml, 20 g protein per d) until hospital	1° end point: Trial 1: Normal vs normal plus supplements: the supplemented diet was associated with an absolute reduction in risk of death of 0.7% (95% CI, -1.4–2.7; P=0.5) and a 0.7% (95% CI, -2.3 to 3.8, P=0.6) increased risk of death or poor outcome Trial 2: Early enteral vs. no tube feeding for more than 7 d: early tube feeding was associated	None	Failure to reach sample sizes in all: Trial 1, 67%; Trial 2, 43%; Trial 3, 32% Stopping recruitment prior to sample sizes being achieved can lead to bias in RCTs	• Trial 1 unable to confirm the expected 4% absolute benefit for death or poor outcome from routine oral nutritional supplements; did not support supplementation of hospital diet for unselected stroke patients who are

discharge (n=2016) Trial 2 Intervention: Early enteral tube (n=429) Comparator: No tube feeding for more than 7 d (avoid) (n=430) Trial 3	with an absolute reduction in risk of death of 5.8% (95% CI, -0.8 to 12.5; P=0.09) and a reduction in death or poor outcome of 1.2% (95% CI, -4.2 to 6.6; P=0.7) • Trial 3: Tube feeding via PEG or NG tube: PEG was associated with an increase in absolute risk of death of 1.0% (95% CI, -10.0 to 11.9; P=0.9) and	predominantly well nourished on admission • Trial 2 suggests that a policy of early tube feeding may substantially reduce the risk of dying after stroke but it is very unlikely the
• Intervention: Tube feeding via PEG (n=162) • Comparator: Tube feeding via NG tube (n=159)	an increased risk of death or poor outcome of 7.8% (95% CI, 0.0–15.5; P =0.05) Safety end point: N/A	alternative policy of avoiding early tube feeding would improve survival Trial 3 data suggest that in the first 2–3 wk after stroke better functional outcomes result from feeding via NG tube than PEG tube

Abbreviations: CI indicates confidence interval; GI, gastrointestinal; HR, hazard ratio; MD, mean difference; N/A, not available; NG, nasogastric; OR, odds ratio; PEG, percutaneous endoscopic gastrostomy; RCT, randomized clinical trial; SAH, subarachnoid hemorrhage; TIA, transient ischemic attack.

Literature search topic: Nutrition

Table LIV. Nonrandomized Trials, Observational Studies, and/or Registries of Oral Hygiene

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Seedat J and Penn C ⁴⁰² 2016 26974243	Study Type: Quantitative, quasi- experimental parallel group design	Inclusion criteria: Diagnosed with either stroke or traumatic brain	1° end point: Aspiration pneumonia	No participant from either group presented with aspiration pneumonia at the initiation of

	I	Latina and Hartanada a	Descrite. The Fisher's societies to be used the title of the	disable sie intervention (outs. 1919
	Size: There were two groups of participants with oropharyngeal dysphagia: • Group one (study group, N=23) was recruited by consecutive sampling, received regular oral care and were not restricted from drinking water; however, all other liquids were restricted • Group two (comparison group, N=23) was recruited via a retrospective record review, received inconsistent oral care and were placed on thickened liquids or liquid-	injury as their primary medical diagnosis with a confirmed diagnosis of oropharyngeal dysphagia Exclusion criteria: N/A	Results: The Fisher's exact test showed that there was a significant, moderate association between the occurrence of aspiration pneumonia and group: all seven were participants from the comparison group (<i>P</i> =0.0092)	dysphagia intervention (entry into the study), although signs of aspiration were observed and aspiration pneumonia developed over the course of intervention in the comparison group, but there was no diagnosis of aspiration in the study group • A limitation of the current study was the exclusion of videofluoroscopy pre-intervention for each participant in the study group to confirm swallowing function • It is possible to reduce adverse medical effects of aspiration including fatality by implementing a cost-effective and low resource oral care protocol for patients with dysphagia • Further studies should be completed
Wagner C, et	restricted diets Study Type: Cohort	Inclusion criteria:	1° end point: Hospital-acquired pneumonia	In this large hospital-based cohort of
al. ²³⁹ 2016 <u>26584429</u>	study compared the proportion of pneumonia cases in hospitalized stroke patients before and	All patients hospitalized with acute ischemic stroke or intracerebral hemorrhage admitted	Results: • The unadjusted incidence of hospital-acquired pneumonia was lower in the group assigned to OHC compared to controls (14 vs. 10.33%; <i>P</i> =0.022), unadjusted OR, 0.68	patients admitted with acute stroke, systematic OHC use was associated with decreased odds of hospital- acquired pneumonia
	after implementation of a systematic intervention Size: N=1656	to a large, urban academic medical center in Boston, MA, USA from May 31, 2008, to June 1,	 (95% CI, 0.48–0.95; P=0.022) After adjustment for influential confounders, the OR of hospital-acquired pneumonia in the intervention group remained significantly lower at 0.71 (95% CI, 0.51–0.98; P=0.041) 	
	admissions (707 formed historical controls; 949 were in	2010 (epoch prior to implementation of OHC), and from		

	the intervention group)	January 1, 2012, to December 31, 2013 (epoch after full implementation of OHC), who were 18 y of age and hospitalized for ≥2 d were eligible for inclusion Exclusion criteria: N/A		
Sorensen RT, et al. ²³⁷ 2013 23636069	Study type: Controlled trial cohort study Size: N=146 hospitalized acute stroke patients included in three groups: an intervention group (N=58), one internal control group (N=58, retrospectively selected from same clinic), and one external control group (N=30) from a comparable stroke unit in a neighboring hospital	Inclusion criteria: Hospitalized acute stroke patients with moderate or severe dysphagia Exclusion criteria: Active metastatic cancer, severe liver or kidney failure, and terminal illness including cancellation of active treatment within 3 d after admission at the stroke unit	1° end point: The intervention consisted of early screening with a clinical method of dysphagia screening, the Gugging Swallowing Screen, and intensified oral hygiene; investigate whether the incidence of aspiration pneumonia could be reduced in such patients by an early screening for dysphagia Results: • The incidence of x-ray verified pneumonia was 4 of 58 (7%) in the intervention group compared with 16 of dysphagia and intensified oral hygiene • 58 (28%) in the internal control group (<i>P</i> <0.01) and with 8 of 30 (27%) in the external control group (<i>P</i> <0.05)	 Cohort studies have shown that oral hygiene protocols may help reduce aspiration pneumonia after stroke The intervention group received early and systematic dysphagia screening (which indicated recommendations for diet administrated orally or by tube) together with intensified oral hygiene The control group contained patients who were not systematically screened for dysphagia within 24 h and who received unsystematic and arbitrary oral hygiene without the use of antibacterial mouth rinse with chlorhexidine Pneumonia was reduced in the intervention group (7% vs. 28%) The efficacy of oral hygiene portion cannot be separated from the combination

Abbreviations: CI indicates confidence interval; OHC, oral health care; and OR, odds ratio. **Literature search topic:** Oral care

Table LV. Randomized Clinical Trials of Oral Care

	omized Clinical Trials o						1 -
Study Acronym;	Aim of Study; Study Type;	Patient Population	Study Intervention	End Point Results (Absolute Event Rates,	Relevant 2°	Study Limitations;	Summary Conclusions
Author;	Study Type, Study Size (N)	Population	(# patients) /	P value; OR or RR; &	End Point (if any)	Adverse	Comments
Year Published	otady oizo (ii)		Study	95% CI)	any)	Events	Commonto
			Comparator	,			
			(# patients)				
Brady MC, et al. ²³⁸ 2006 17054189	Aim: To compare the effectiveness of staff led OHC interventions with standard care for ensuring oral hygiene for individuals affected after a stroke (post stroke) Study type: Intervention review of RCT that evaluated one or more interventions designed to improve oral hygiene Size: N=470 patients (3 studies)	Inclusion criteria: • RCTs evaluating one or more interventions designed to improve oral health • Recruited from a health care setting with a mixed population of individuals post-	Interventions: OHC education training program: staff trained (n=40), patients receiving OHC interventions (n=132) Decontamination gel (n=103) Ventilator- associated	1° end point: Dental plaque (plaque scale and denture cleanliness scale): • OHC demonstrated significant reduction in denture plaque score (<i>P</i> <0.0000.1) • No difference in dental plaque (DMS, -0.25; 95% CI, -0.77 to 0.28) Safety end point: None	Patient satisfaction care received, oral comfort and appearance: result not reported Staff knowledge on oral care (P=0.0008) Staff attitude toward oral care (P=0.0001) Presence of	Blinding of participants impossible for some OHC, recorded when that happened Incomplete outcome data, selective outcome reporting, sample size calculations, comparability of groups at baseline.	Evidence with review indicates the potential benefits of decontamination gel on the incidence of pneumonia, but further investigation is needed Was not an outcome, but patients receiving the decontemination.
	Studies)	Exclusion criteria: Studies that did not have patient specific data	pneumonia bundle of care augmented with an OHC (n=100) Comparators: OHC education training program: untrained staff (n=27), standard oral care (n=129) Placebo gel (n=103) Standard VAP bundle no		oral disease: no evidence of a difference in gingivitis between groups (DMS, -1.57, 95% CI, -2.23 to 0.92; P<0.00001)	baseline, reliability of measures used, and evidence of intention-to-treat analysis	decontamination gel had fewer incidences on pneumonia (one incident) over the course the trial period than those that used the placebo gel (100 participants; seven incidents of pneumonia) (OR, 0.20, CI 95%, 0.05–0.84, P=0.03)

	augmented OHC (n=100)		

Abbreviations: CI indicates confidence interval; DMS, difference in mean score; HR, hazard ratio; N/A, not available; OHC, oral health care; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk.

Literature search topic: Oral care

Table LVI. Randomized Clinical Trials Comparing Deep Vein Thrombosis Prophylaxis

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
European Stroke Organisation (ESO) guidelines for prophylaxis for VTE Dennis M, et al. ²⁴⁰ 2016 Link to article	Aim: Focused on both non-pharmacological and pharmacological interventions given with the primary objective of reducing the risk of VTE Study type: RCTs and systematic reviews/meta-analyses Size: 24 RCT's reviewed, total (N=22,700)	Inclusion criteria: RCTs and systematic reviews evaluating GCS, IPC, and prophylactic anticoagulation with UFH, LMWH and heparinoids, but no randomized trials evaluating NES Exclusion criteria: Did not include trials that directly compared anticoagulants with antiplatelet medications	Intervention: Pharmacologic or non- pharmacologic interventions: 1. GSC (n=1256) 2. IPC (n=1438) 3. Anti- coagulants UFH (n=5363) 4.LMWH or heparinoid (n=876) Comparator: Care which did not include specific VTE prophylactic intervention: 1. No GCS (n=1262) 2. No IPC (n=1438)	1° end point: Death or dependency at follow-up Survival (or its reciprocal – mortality) Functional status (mRS, the Oxford handicap scale, the International Stroke trial simple questions, or the Barthel Index) ICH Symptomatic PE (fatal and non-fatal) Major (or serious) extracranial hemorrhages Symptomatic DVT Asymptomatic DVT Fractures secondary to falls due to mechanical devices or osteoporosis secondary to prolonged heparin use	Other outcomes were fatal PE and HRQOL- adjusted survival	Risk of bias due to limitations in study design and inconsistency of results, indirectness of evidence, imprecision, reporting bias, magnitude of the treatment effect, evidence of a dose–response relationship, and the effect of all plausible confounding The quality of evidence was judged to be moderate and strength of recommendation	recommendation s: GCS should not be used in patients with ischemic stroke Thigh-length IPC should be used for immobile patients Prophylactic anticoagulation with UFH (5000U × 2, or × 3 daily) or LMWH or heparinoid should be considered in immobile patients with

3. No anticoagulants (n=10,197) 4.Only UFH (n= 870	• Any hemorrhage including minor bruising • Skin breaks which may be caused by stockings and IPC sleeves Results: • GCS had no significant effect on death (<i>P</i> =0.41) • IPC had no significant effect, despite a strong trend on deaths during treatment period (OR, 82; 95% CI, 0.66–1.02) but improved survival to 6 mo (HR, 0.86; 95% CI, 0.74–0.99) • Anticoagulants were associated with a reduction in DVT (OR, 0.21; 95% CI, 0.15–0.29); there were also statistically significant increases in sICH (OR, 1.68; 95% CI. 1.11–2.55) and symptomatic	weak due to lack of blinding • The strength of recommendation was weak	ischemic stroke in whom the benefits of reducing the risk of VTE is high enough to offset the increased risks of ICH and extracranial bleeding associated with their use •If prophylactic anticoagulation is indicated, LMWH or heparinoid should be considered instead of UFH because of its greater reduction in risk of DVT, the greater convenience, reduced staff
	1.68; 95% CI. 1.11–2.55)		-
	(OR, 1.65; 95% CI, 1.0– 2.75)		costs, and patient comfort
	For LMWHs of heparinoids or UFH, there		associated with single daily dose
	were nonsignificant trends towards reduction in PE		vs. multiple daily injections, but these
	(<i>P</i> =0.81) and sICH (<i>P</i> =0.84)		advantages should be
	There was a statistically significant increase in		weighed against
	major extracranial hemorrhage (OR, 3.79;		the higher risk of extracranial
	95% CI, 1.30–11.03; <i>P</i> =0.01) with LMWH		bleeding, higher drug costs and

				The use of LMWH was associated with a statistically significant reduction in DVTs (OR, 0.55; 95% CI, 0.44–0.70), which were mostly asymptomatic Safety end point: None			risks in elderly patients with poor renal function
Sandercock et al. ¹⁹⁸ 2015 25764172	Aim: To assess the effectiveness and safety of anticoagulation within 14 days of ischemic stroke onset Study Type: Meta-analysis Size: N=22,544 (from 14 trials) for PE analysis N=916 (from 10 trials) for DVT analysis N=22,943 (from 16 trials) for ICH analysis N=22,255 (from 18 trials) for major ECH	Inclusion criteria: Patients with confirmed or suspected ischemic stroke within the previous 14 days	Not specified	End points: PE (symptomatic): OR, 0.60; 95% CI, 0.44-0.81) with anticoagulation vs no anticoagulation DVT (symptomatic or asymptomatic): OR, 0.21; 95% CI, 0.15-0.29 with anticoagulation vs no anticoagulation	•Symptomatic ICH: OR, 2.55; 95% CI, 1.95-3.33 for anticoagulation vs no anticoagulation • Major ECH: OR, 2.99; 95% CI, 2.24-3.99	Different forms of anticoagulation Various forms of defining and assessing the endpoints	Benefit of anticoagulation in the reduction of VTE are offset by the increased risk of bleeding
CLOTS 3 CLOTS Trials Collaboration Dennis M et al. 403 2013 23727163	Aim: Establish whether routine application of IPC to the legs of immobile patients who had a stroke reduced their risk of DVT Study type: Multicenter parallel group randomized trial Size: N=2876	Inclusion criteria: Admitted within 3 d of acute stroke and be immobile Exclusion criteria: Age <16 y, SAH, or contraindications	Intervention: Routine care plus IPC (thigh high length) (n=1438) Comparator: Routine care and no IPC (n=1438)	1° end point: • Symptomatic or asymptomatic DVT in the popliteal or femoral veins detected on a screening within 30 d of randomization: • An absolute reduction in risk of 3.6% (95% CI, 1.4–5.8)	30- and 60-d death DVT (including symptomatic or asymptomatic calf, popliteal or femoral) Symptomatic DVT, PE confirmed on	Moderate adherence to IPC Masking poor at times: patient went for screening with device on	• IPC, UFH, or LMWH and heparinoids can reduce the risk of VTE in immobile patients with acute ischemic stroke, but further research is required to

г			T	1			T	
			to IPC		The adjusted OR for the	imaging or		test whether
					comparison of 122 of 1267	autopsy		NES is effective
					patients vs. 174 of 1245			The strongest
					patients was 0.65 (95% CI,	 Complications 		evidence is for
					0.51–0.84; <i>P</i> =0.001)	of IPC		IPC
					Deaths in the treatment	association with		Better
					period occurred in (11%)	days worn (i.e.,		methods are
					allocated IPC and (13%)	end date minus		needed to help
					allocated no IPC within the	start date)		stratify patients
					30 d of treatment period	divided by the		in the first few
					(P=0.057)	number of days		wks after stroke onset by their
					 Skin breaks on the legs were reported in (3%) 	it should have		risk of VTE and
					patients allocated IPC and	been worn		their risk of
					in 20 (1%) patients			bleeding on
					allocated no IPC (<i>P</i> =0.002)			anticoagulants
					• Falls with injury were			antiooagaianto
					reported in (2%) patients in			
					the IPC group and in (2%)			
					patients in the no-IPC			
					group (<i>P</i> =0.221)			
					3 - 1 (-)			
					Safety end point: None			
	Geeganage CM,	Aim: To assess the effect	Inclusion	Intervention:	1° end point: The ratio of	Insufficient data	 Trials were 	Routine acute
	et al. ⁴⁰⁴	of heparin and other	criteria: RCT	LMWH	sICH to sPE was	were obtained	excluded	use was not
	2013	antithrombotic therapies in	assessing	(n=18,29),	increased with LMWH (RR:	for other	because data on	recommended
	<u>22516428</u>	patients with acute/early	anticoagulation	heparinoids	2.1; 95% CI: 1.03–4.28),	outcomes,	both sICH and	but may still be
		ischemic stroke	(UFH, LMWH,	(n=341), and	but was in approximated	precluding	sPE were	relevant in
			and heparinoid	UFH (n=5875)	unity with heparinoids (RR,	further analysis	unavailable in	patients at very
		Study type: Systematic	in adults>18 y		1.27; 95% CI, 0.31–5.17)		the primary	high risk of PE
		review and meta-analysis	and within 14 d	Comparator:	and UFH (RR, 0.99; 95%		publications	(e.g., morbid
		of RCTs	of acute stroke	Same as above	CI, 0.65–1.52)		Many of the	obesity, previous
		Size: 15 RCTs that fulfilled	Evaluaion				included trials	VTE, and
		the selection criteria	Exclusion criteria: If trial				did not primarily	inherited thrombophilia) or
		(N=8045 patients)	did not record				focus on sICH	if started later,
		(N-0040 palients)	information on				and PE and so	although trials
			PE and sICH				only collected symptomatic and	have not
			ana olon				fatal events	assessed these
							ialai events	issues
L								133463

al. ¹⁹⁷ 2013 23642343	Aim: To test the hypothesis that a policy of using clinical data to target heparins in patients with ischemic stroke who have a high risk of venous or arterial thromboembolism, and avoiding heparins in patients with a high risk of bleeding, leads to overall better outcomes Study type: Meta-analysis Size: N=22,655 patients; 5 RCTs using UFH, heparinoids and LMWH in acute ischemic stroke included: IST, TOAST, TAIST, HAEST, FISS-tris	Inclusion criteria: Patients with baseline diagnosis of probable or definite ischemic stroke Exclusion criteria: Excluded 22 other trials of heparins because they were small (<100 patients), and were not clearly randomized, or data not readily available	Intervention: RCTs (5) compared heparins (UFH or LMWH) (n=11,478) Comparator: Aspirin (n=10,941)	1° end point: Prediction of thrombotic events (MI, stroke, deep VTE, or PE) and hemorrhagic events (symptomatic intracranial or extracranial in the first 14 d after stroke: • No group had a statistically significant benefit of heparins over aspirin or placebo in an ordinal logistic regression model (<i>P</i> =0.43) for the prevention of death or disability at the time of last follow-up • In none of the 16 groups was there evidence of heterogeneity between the risk differences from the different trials • There was no visible	The state of being dead or dependent at final follow-up	Definition of sICH also varied widely among trials The trials used different types and doses of low-dose anticoagulation Predictive variable missing in dataset that may impact predictive models Random error in variable due to data defined and obtained differently (particularly measures of stroke severity) Large RCTs collection of data for death or dependence at end of follow-up rather than data on recurrent events or VTE	In view of the lack of evidence for heparin prophylaxis in reducing mortality in other categories of high-risk medical patients and in stroke, these data suggest current guideline recommendation s for routine or selective use of heparin in stroke (and perhaps other patients) should be revised
----------------------------------	---	--	---	---	---	--	---

eval with (N=	hout stroke, 8 trials =15,405) of patients with ute stroke	evaluated therapy with low- dose heparin or related agents or mechanical measures compared with placebo, no treatment, or other active prophylaxis in the target population Exclusion criteria: Surgical hospitalized patients	(n=15,405) 2. LMWH vs. UFH in medical patients without stroke (n=11,650) and with stroke (n=2785) 3. Medical device for BTE prophylaxis vs. no mechanical devices in medical patients with and without stroke (n=2518)	statistically significant reduced risk for mortality (risk ratio: 0.94; 95% CI, 0.84–1.04; I²=0%; absolute reduction); acute stroke patients: LMWH with UFH in patients with acute stroke did not show statistically significant differences for mortality (risk ratio: 1.00; 95% CI, 0.81–1.22; I²=1%; absolute reduction) 2. Medical patients without stroke showed no statistically significant difference in mortality (risk ratio: 0.91; 95% CI, 0.73–1.13; I²=25%; absolute reduction); stroke patients did not show statistically significant differences for mortality (risk ratio: 1.00; 95% CI, 0.81–1.22; I²=1%; absolute reduction 3. Medical results showed no statistically significant difference in risk	patients: no statistically significant symptomatic DVT, or PE (risk ratio: 1.11; 95% CI, 0.87–1.42) • All PE, fatal PE: in medical patients, heparin was associated with reduced risk for PE (risk ratio: 0.69; 95% CI, 0.52–0.90; I²=0%; absolute reduction); in stroke patients, heparin had no statistically significant effect on PE (risk ratio: 0.70; 95% CI, 0.44–1.11; I²=0%; major bleeding events (risk ratio: 0.89; 95% CI, 0.70–1.15; I²=0%; • Bleeding events in	prophylaxis but there was increased risk for major bleeding • In both groups, low-dose heparin prophylaxis may have reduced PE and increased risk for bleeding and major bleeding events and had no statistically significant effect on mortality • The conclusion of findings indicate little or no net benefit • No significant differences in clinical benefits or harms were found between UFH and LMWH

T T			1
		bleeding events	
	Safety end p		
		did not reach	
		statistical	
		significance (risk	
		ratio: 1.49; 95%	
		CI, 0.91–2.43;	
		l ² =16%; absolute	
		increase); in	
		stroke patients	
		heparin	
		associated with	
		statistically	
		significant	
		increase in	
		major bleeding	
		events (risk	
		ratio: 1.66; 95%	
		CI, 1.20–2.28;	
		I ² =0%; absolute	
		increase); in 14-	
		day hemorrhagic	
		stroke or serious	
		extracranial	
		hemorrhage	
		(1.3% vs. 0.80%;	
		OR, 1.73; 95%	
		CI, 1.22–2.46)	
		Mechanical	
		prophylaxis	
		effect on skin in	
		medical and	
		stroke patients	
		(statistically	
		significantly	
		increased	
		among patients	
		treated with	
		compression	
		stockings (risk	

	ratio: 4.02; 95%	
	CI, 2.34–6.91)	
	(risk ratio: 1.11;	
	95% CI, 0.87–	
	1.42); risk for	
	lower-extremity	
	skin damage	
	statistically	
	significantly	
	increased	
	among patients	
	treated with	
	compression	
	stockings (risk	
	ratio: 4.02; 95%	
	CI, 2.34–6.91)	

Abbreviations: Cl indicates confidence interval; DVT, deep vein thrombosis; ECH, extracranial hemorrhage; ESO, European Stroke Organisation; GCS, graduated compression stockings; HR, hazard ratio; HRQOL, health-related quality of life; ICH, intracranial hemorrhage; IPC, intermittent pneumatic compression; LMWH, low-molecular–weight heparin; MI, myocardial infarction; mRS, modified Rankin Scale; N/A, not available; NES, neuromuscular electrical stimulation; OR, odds ratio; PE, pulmonary embolism; RCT, randomized clinical trial; RR, relative risk; SAH, subarachnoid hemorrhage; sICH, symptomatic intracerebral hemorrhage; UFH, unfractionated heparin; and VTE, venous thromboembolism. Literature search topic: Stroke, DVT prophylaxis

Table LVII. Nonrandomized Studies of Depression Screening in Patients with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Meader N, et al. ²⁴¹ 2014 23385849	Study type: Meta- analysis Size: N=2907 (24 studies)	Inclusion criteria: Validation studies of mood questionnaires from inception to 2012 Exclusion criteria: Studies not clearly stating diagnostic status of depression or insufficient data for extraction	1° end points: Sensitivity and specificity for diagnosis of post-stroke depression; ROC meta-analysis Results: CESD: sensitivity: 0.75 (95% CI, 0.60–0.85); specificity: 0.88 (95% CI, 0.71–0.95) HDRS: sensitivity: 0.84 (95% CI, 0.75–0.90); specificity:0.83 (95% CI, 0.72–0.90) PHQ-9: sensitivity: 0.86 (95% CI, 0.70–0.94); specificity: 0.79 (95% CI, 0.60–0.90)	Several tools have optimal ROC characteristics for detecting post-stroke depression including the CESD, HDRS, and PHQ-9; however, further research is needed to determine the optimal screening method and timing to diagnose and treat PSD ²⁴²

Abbreviations: CESD indicates Center of Epidemiological Studies-Depression Scale; HDRS, Hamilton Depression Rating Scale; PHQ-9, Patient Health Questionnaire-9; PSD, poststroke depression; and ROC, receiver operating curve. **Literature search topic**: Depression

Table LVIII. Randomized Clinical Trials of Mobility Intervention

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SEVEL Herisson F, et al. 406 2016 27023901	Aim: To test the hypothesis that early sitting could be beneficial to stroke patient outcome Study type: RCT Size: N=138	Inclusion criteria: Age >18 y Exclusion criteria: Massive infarct or contraindication for sitting	Intervention: Early-sitting group patients were seated out of bed at the earliest possible time but no later than one calendar day after stroke onset (n=63) Comparator: Progressively- sitting group was first seated out of bed on the third calendar day after stroke onset (n=75)	1° end point: Primary outcome measure was the proportion of patients with a mRS [0–2] at 3 mo post stroke: there was no difference regarding outcome of people with stroke, with a proportion of mRS [0–2] score at 3 mo of 76.2% and 77.3% of patients in the early- and progressive-sitting groups, respectively (<i>P</i> =0.52) Safety end point: N/A	Prevalence of medical complications Length of hospital stay Tolerance to the procedure	Slow enrollment, could detect beneficial/detrim ental effects of ± 15% of the early sitting procedure on stroke outcome with a realized 37% power; however, enrollment was sufficient to rule out effect sizes >25% with 80% power No blinded assessment of the primary outcome	There was also no difference between groups for secondary outcome measures, and the procedure was well tolerated in both arms
Morreale M, et al. ⁴⁰⁷ 2016 26220327	Aim: To compare PNF and CTE methods in two different time settings (early vs. standard approach) to evaluate different role of time and techniques in functional	Inclusion criteria: First ever sub- cortical ischemic stroke in the MCA territory and contralateral hemiplegia	Intervention: • All patients were randomly assigned by means of a computer- generated randomization	1° end point: Disability at 3–12 mo (disability measures: mRS and Barthel Index): disability was not different between groups at 3 mo but Barthel Index significantly changed between early	Six-Minute Walking Test, Motricity Index, MMSE, Beck Depression Inventory: Six- Minute Walking Test (P=0.01)	Homogenous population that may not reflect other strokes; moderate stroke severity in population	A time- dependent effect of rehabilitation on post stroke motor recovery was observed, particularly in

AVERT	recovery after acute ischemic stroke Study type: We designed a prospective multicenter blinded interventional study of early vs. standard approach with two different methods by means of both PNF and CTE Size: N=340	admitted within 6 and 24 h from symptoms onset Exclusion criteria: NIHSS<2, aphasia, visual disturbances, neglect and/or other spatial representation defects, disorientation or confusion, ongoing seizures, MMSE<26, cardiovascular or neurological instability, hemorrhagic transformation, prior diagnosed neurological disease, chronic inflammatory disease, psychiatric disease, amputation, fractures or neoplasms Inclusion	sequence in blocks of 4 to one to the 4 interventional groups: early PNF (n=110), delayed PNF (n=60), early CTE (n=110), delated CTE (n=60) Patients in both delayed group underwent to a standard protocol in the acute phase Comparator: Standard approach delayed PNF (n=60), delayed CTE (n=60) Intervention:	vs. delayed groups at 12 mo (<i>P</i> =0.01) Safety end point: Safety outcome: immobility-related adverse events 1° end point: Favorable	and Motricity Index in both upper (P=0.01) and lower limbs (P=0.001) increased in early vs. delayed groups regardless rehabilitation schedule	• A limitation of	lower limb improvement. According to our results, rehabilitation technique seems not to affect long-term motor recovery
AVERT Trial Collaboration Group ²⁴³ 2015 <u>25892679</u>	effectiveness of frequent, higher dose, very early mobilization with usual care after stroke	criteria: • Age ≥18 y, with confirmed first (or recurrent) stroke (infarct or	High-dose, very early mobilization protocol interventions included:	outcome 3 mo after stroke, defined as a mRS of 0–2: patients in the high-dose, very early mobilization group has less favorable outcomes	included an assumption free ordinal shift of the mRS across the entire range of the scale;	large trials is the small amount of information that can be obtained about potential confounding	mobilization after stroke is recommended in many clinical practice guidelines

Study type: RCT parallel-	intracerebral	beginning	(46% vs. 50%) than those	time taken to	factors (e.g.,	worldwide, and
group, single-blind	hemorrhage)	mobilization	in the usual care group;	achieve	physiological	our findings
group, sirigie-biiriu	Admitted to a	within 24 h of	8% vs. 7% of patients died	unassisted	variables) and	should affect
Size: N=2104 patients of		stroke onset	in the very early	walking over 50	about each	clinical practice
56 acute stroke units	stroke unit within			m and the		
56 acute stroke units	24 h of stroke	whereas usual	mobilization group, and 19% vs. 20% had a non-		staff-patient	by refining
	onset	care typically		proportion of	interaction	present
	Treatment with	was 24 h after	fatal serious adverse	patients	• Not	guidelines;
	alteplase	onset of stroke;	event with high-dose, very	achieving	prescriptive	however, clinical
		there was a	early mobilization	unassisted	about usual care	recommendation
	Exclusion	focus on sitting,	Cofets and maintable	walking by 3 mo;	mobilization	s should be
	criteria:	standing and	Safety end point: N/A	and deaths and	practices, which	informed by
	• mRS >2, early	walking activity;		the number of	changed during	future analyses
	deterioration,	and at least		non-fatal serious	the trial; usual	of dose-
	direct admission	three additional		adverse events	care clinicians	response
	to the ICU,	out-of-bed		at 3 mo	started	associations
	documented	sessions			mobilization	
	palliative	(n=1054)			earlier each	
	treatment,	Commonatori			year, with the	
	immediate	Comparator:			result that	
	surgery, another	Standard of care			roughly 60% of	
	serious medical	(n=1054)			patients	
	illness or				receiving usual	
	unstable				care had started	
	coronary				out-of-bed	
	condition, coma,				therapy within	
	SBP <110				24 h of stroke	
	mmHg or >220				onset	
	mmHg, oxygen				Whether this	
	saturation <92%				result was a	
	with oxygen				consequence of	
	supplementation				contamination	
	, resting heart				from the trial	
	rate of <40				protocol, a	
	beats/min or				response to	
	>110 beats/min,				changes in	
	temperature				attitudes to early	
	>38.5°C				mobilization	
	• SAH				over time as	
					reflected in	
	J				recent clinical	

			guidelines, or	
			both, is	
			uncertain	

Abbreviations: CTE indicates cognitive therapeutic exercise; h, hours; HR, hazard ratio; ICU, intensive care unit; MCA, mean cerebral artery; min, minutes; MMSE, Mini-Mental State Examination; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PNF, proprioceptive neuromuscular facilitation; RCT, randomized clinical trial; RR, relative risk; SAH, subarachnoid hemorrhage; SBP, systolic blood pressure; and y, year.

Literature search topic: Early mobility

Table LIX. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Hemispheric Strok	e			
Sundseth J, et al. ²⁵¹ 2017 27942881	Study type: Retrospective cohort Size: N=45	Inclusion criteria: MCA infarction with cerebral edema and decompressive craniectomy Exclusion criteria: N/A	1° end point: Early death (during primary hospitalization) Results: MCA infarct with additional anterior or posterior cerebral artery territorial involvement only clinically significant predictor of early in-hospital death	No age-related impact on early death after decompression for MCA infarct
Alexander P, et al. ²⁵⁰ 2016 27884858	Study type: Meta- analysis of RCTs Size: N=338 patients (7 RCTs)	Inclusion criteria: RCTs comparing conservative vs. DHC for ischemic MCA infarct syndrome Exclusion criteria: N/A	1° end point: Death and disability mRS Results: • DHC reduced death 69% vs. 30% • Severe disability (mRS=4), 32% and very severe disability (mRS=5), 11%	Quality of evidence high for death; low for functional outcome mRS 0–3; moderate for mRS 0–4 (wide CIs and problems in concealment, blinding of outcome assessors, stopping early DHC left 34% with mRS 4–5 and 11% mRS 5

Yang MH, et al. ²⁴⁹ 2015 25661677	Study type: Meta- analysis Size: N=314 patients (6 studies)	Inclusion criteria: RCTs of DHC for stroke Exclusion criteria: N/A	1° end point: N/A Results: DHC reduces mortality, death or major disability (mRS>3) and death or severe disability (mRS>4); associated with slightly higher proportion of major disability (mRS4–5) in survivors	Compared to conservative treatment DHC decreased mortality and improved functional outcome in a clinically meaningful manner Increase in the proportion of survivors with major disability was not clinically meaningful
Agarwalla PK, et al. ²⁴⁵ 2014 24402484	Study type: Literature review Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° end point: N/A Results: N/A	Review of literature on craniotomy in acute stroke Supports current guidelines as written
Suyama K, et al. ²⁵² 2014 25045787	Study type: Retrospective cohort Size: N=355	Inclusion criteria: DHC Exclusion criteria: N/A	1° end point: 30-d mortality and functional outcome (mRS) at 3 mo Results: Overall mortality 18.6%; only 5% with favorable functional outcome (mRS<4); Poor outcome associated with GCS<6 and midbrain compression	Only 8.7% of patients with malignant MCA infarction underwent DHC in Japan Mean age 67; patients aged >60 y comprised 80% of cohort 22% of patients had mRS=4; 26.9% with mRS=5 Age not found to be independent risk factor of poor outcome
Yu JW, et al. ²⁵³ 2012 <u>23210030</u>	Study type: Retrospective cohort Size: N=131	Inclusion criteria: Malignant MCA infarction, age>18 y, decompressive hemicraniectomy within 48 h of stroke onset; NIHSS>or=18 for right-sided infarction, NIHSS>or=20 for left- sided infarction	1° end point: Mortality at 30 d and six mo; outcome ("good" outcome mRS≤3; "poor" outcome mRS>3) Results: Reduction in mortality in craniectomy group vs conservative care group (29.3% vs 58.9% at 30 days and 48.3% vs 71.2% at six months). Death rate at six mo was not statistically different between age groups (>or=70 y vs <70 y) nor was rate of favorable outcome (P=0.137, P=0.077) High preoperative NIHSS was associated with higher rate of six-month mortality (P=0.047)	Decompressive craniectomy reduced mortality and improved rate of good outcomes Age was not independently associated with death at six months or poor outcome.

Cerebellar Stroke		Exclusion criteria: Preexisting significant disability (mRS>vs=4), pupils fixed and dilated, hemorrhagic infarction >50% MCA territory on CT		
Agarwalla PK, et al. ²⁴⁵ 2014 24402484	Study type: Comprehensive literature review Size: 12 Sigle institution and multi- institution series, N=283	Inclusion criteria: e Sigle institution and multi-institution series in which suboccipital decompression was used in the treatment of cerebellar infarct Exclusion criteria: N/A	1° end point: N/A Results: Suboccipital decompression is a life-saving procedure in patients with massive cerebellar infarctions. Ventriculostomy was commonly performed either in isolation as treatment of hydrocephalus or as adjunctive treatment to suboccipital decompression (60%, n=172); Several studies identify progressive decline in level of consciousness as indication for decompression or ventriculostomy. Long term functional outcomes after suboccipital decompression for massive cerebellar infarctions are correlated with immediate preoperative level of consciousness.	Non-randomized studies, with a mix of retrospective series of various sizes Cerebellar infarction with symptomatic edema and mass effect may be indicated before neurological deterioration, but the timing is unclear Ventriculostomy is commonly performed; very rare mention of upward herniation only in setting of aggressive cerebrospinal fluid diversion without suboccipital decompression
Mostofi K ²⁴⁶ 2013 <u>23532804</u>	Study type: Retrospective series Size: N=53	Inclusion criteria: Massive cerebellar stroke Exclusion criteria: N/A	1° end point: Morbidity and mortality (GCS at 1 mo) Results: Clinically meaningful improvement in outcomes/GCS in surgical group	Suboccipital craniectomy improves outcome over medical management Only 3% of patients received ventriculostomy

One patient treated with decompression only Recommend ventriculostomy for hydrocephalus and worsening consciousness; decompression reserved for worsening despite ventricular drainage	Raco A, et al. ²⁴⁴ 2003 14580272	Study type: Retrospective cohort Size: N=44	Inclusion criteria: Cerebellar infarct Exclusion criteria: Deep coma	1° end point: mRS and death Results: 20/25 patients without decompression with good outcomes; 13/17 with ventriculostomy or decompression with good outcomes; overall mortality 13.6%	Recommend ventriculostomy for hydrocephalus and worsening consciousness; decompression reserved for worsening despite
--	---	---	---	--	--

Abbreviations: CI indicates confidence interval; DHC, decompressive hemicraniectomy; GCS, Glasgow Coma Score; MCA, middle cerebral artery; N/A, not available; and RCT, randomized controlled trial.

Literature search topics: cerebral edema, surgical decompression suboccipital AND Cerebral edema, impact of age AND Cerebral edema, hypothermia, corticosteroids AND Cerebral edema, decompression timing AND Cerebral edema, ventriculostomy, hydrocephalus AND Cerebral edema, barbiturates AND Cerebral edema, corticosteroids AND Cerebral edema, cerebellar decompression

Table LX. Randomized Clinical Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
DESTINY II Juttler E, et al. ²⁵⁴ 2014 <u>24645942</u>	Aim: To determine impact of decompressive craniotomy on patients aged >60 y Study type: RCT Size: N=112	Inclusion criteria: Malignant MCA infarct randomized within 48 h Exclusion criteria: Age <60	Intervention: Decompressive hemicraniectomy (n=49) Comparator: Conservative treatment in the ICU (n=63)	1° end point: Survival without severe disability (mRS <5) at 6 mo: proportion who survived mRS 0-4 was 38% in hemicraniectomy group vs. 18% in control group (CI, 1.06–7.49; P=0.04); mRS 3 7% surgery group vs. 3% control group	Death at 6 mo	N/A	• Hemicraniectomy improved primary end point (38% vs. 18%; OR, 2.91; 95% CI, 1.06–7.49; P=0.04) • None with mRS<3; 35% vs.

		y, intracerebral hemorrhage		Safety end point: N/A			15% with mRS=4; 28% vs. 18% with mRS=5 • Improved survival in pts aged >60 y; most patients are disabled
ChiCTR Zhao J, et al. ²⁵⁵ 2012 <u>22528280</u>	Aim: To assess effectiveness of DHC on patients ≤80 y Study type: RCT Size: N=47	Inclusion criteria: Patients aged18–80 y with malignant MCA infarct Exclusion criteria: Age >80 y; DHC > 48 h of stroke onset	Intervention: DHC (n=24) Comparator: Medical management (n=23)	1° end point: mRS at 6 mo: DHC reduced mortality significantly at 6 and 12 mo (33.3 vs. 82.6%, P=0.001); significant reduction in poor outcome (mRS>4) in 36 patients after 6 mo (P<0.001) Safety end point: Significant reduction (P<0.001) in mortality after 36 patients completed 6 mo follow up	6- and 12- month mortality and mRS after 1 y Subgroup analysis performed for patients aged 60–80 y	• Stopped early • Concluded that DHC <48 h reduced death and severe disability even in patients aged 60–80 y	• DHC reduced mortality in all subgroups at 6 and 12 mo (12.5% vs. 60.9% and 12.5 vs. 60.9%) • Fewer patients had mRS>4 (33.3 vs. 82.6%)
DESTINY, DECIMAL, HAMLET; Vahedi, et al. ²⁴⁷ 2007 17303527	Aim: Analyze effectiveness of decompressive craniectomy in malignant MCA infarction Study type: Pooled analysis of three RCTs Size: N=93	Inclusion criteria: age 18- 80 y with MCA malignant infarction, enrolled in HAMLET, DECIMAL, or DESTINY trials; treated within 48 h after stroke Exclusion criteria: Age>60; failed enrollment	Intervention: Decompressive hemicraniectomy Comparator: Conservative treatment in the ICU	1° end point: mRS at 1 year dichotomized between favorable (0-4) and unfavorable (5 or death); more patients in decompressive group had mRS≤4 (75% vs 24%; aRR 51%; 95% CI, 34-69), an mRS≤3 (43% vs 21%; aRR 23%) and survived (78% vs 29%; aRR 50%) Safety end point: N/A	Case fatality rate at 1 year, mRS dichotomized between 0-3 and 4 to death.	N/A	Decompressive hemicraniectomy within 48 hours of malignant MCA infarction reduces mortality and increases numbers of patients with favorable outcome (mRS 0-4) Numbers needed to treat of two for survival with

Abbreviations: CI indicates confidence interval; DHC, decompressive hemicraniectomy; h, hour; HR, hazard ratio; mRS, modified Rankin Scale; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and y, year.

Literature search topics: Cerebral edema, surgical decompression suboccipital AND Cerebral edema, impact of age AND Cerebral edema, hypothermia, corticosteroids AND Cerebral edema, decompression timing AND Cerebral edema, ventriculostomy, hydrocephalus AND Cerebral edema, barbiturates AND Cerebral edema, corticosteroids AND Cerebral edema, cerebellar decompression

Table LXI. Nonrandomized Trials, Observational Studies, and/or Registries of Acute Multiple Infarcts in Multiple Cerebrovascular

Circulations and Stroke Etiologic Classification

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Novotny V, et al. ²⁶⁷ 2017 27109593	Study type: Prospective observational study Size: N=2125 (67 with AMIMCC)	Inclusion criteria: Consecutive patients with acute ischemic stroke who had MRI DWI lesions Exclusion criteria: Symptoms less than 24 h	1° end point: • Lesions in ≥2 vascular supply territory were defined as multiple acute cerebral infarcts (AMIMCC) • CE defined as sudden arterial occlusion due to embolus from the hears because of high- or medium risk source (TOAST criteria) Results: • AMIMCC: CE, 29%; other determined, 29%; undetermined, 42% • CE occurred in 67/187 (36%) patients with AMIMCC and 557/1938 (29%) patients without AMIMCC (P=0.04)	AMIMCC was a poor predictor of CE etiologic classification: sensitivity, 11%; specificity, 92%; PPV, 36%; NPV, 71%; LR+, 1.34; LR-, 0.98
Depuydt S, et al. ²⁶² 2014 24332593	Study type: Prospective stroke cohort of consecutive patients with DW- MRI confirmed cerebral arterial acute infarcts	Inclusion criteria: Consecutive patients admitted for a suspected stroke or TIA in a stroke unit Exclusion criteria: None given	1° end point: • AMIMCC were defined by multiple acute DWI lesions distributed in more than one cerebral arterial circulation (among the 2 anteriors/carotids and 1 posterior/vertebrobasilar system) • Stroke etiologic classification was by the TOAST and ASCO systems	AMIMCC was a moderate predictor of CE etiologic classification: PPV, 49%

Braemswig <u>TB</u> , et al. ²⁶¹ 2013 23765944	Size: N=824 (80 with AMIMCC) Study type: Prospective observational study Size: N=340 (57 with AMIMCC)	Inclusion criteria: MRI within 24 h after symptom onset of a clinically diagnosed ischemic stroke Exclusion criteria: Patients who underwent endovascular interventions and patients without evidence of infarction on MRI were	Results: AMIMCC: CE, 49%; other determined, 25%; none identified, 20% 1° end point: • Several lesions in ≥2 vascular supply territory were defined as multiple territory lesion pattern (AMIMCC) • Stroke etiologic classification was by the TOAST criteria Results: • AMIMCC: CE, 33%; other determined, 21%; undetermined, 40% • CE occurred in 19/57 (33%) patients with AMIMCC and 50/136 (37%) patients without AMIMCC (<i>P</i> =0.74)	AMIMCC was a poor predictor of CE etiologic classification: sensitivity, 28%; specificity, 69%; PPV, 33%; NPV, 63%; LR+, 0.90; LR-, 1.04
Cho AH, et al. ²⁶⁰ 2007 17401747	Study type: Retrospective analysis Size: N=685 (67 with AMIMCC)	excluded Inclusion criteria: A final diagnosis of acute ischemic stroke with DWI confirmation of acute infarcts, and DWI performed within 48 h of symptom onset Exclusion criteria: None given	1° end point: • AMIMCC were defined as noncontiguous unambiguous focal bright signal intensities on DWI distributed in more than one cerebral circulation • Stroke etiologic classification was by the TOAST criteria Results: • AMIMCC: CE, 30%; other determined, 51%; undetermined, 19% • CE occurred in 20/67 (30%) patients with AMIMCC and 134/618 (22%) patients without AMIMCC (<i>P</i> =0.164)	AMIMCC was a poor predictor of CE etiologic classification: sensitivity, 13%; specificity, 91%; PPV, 30%; NPV, 78%; LR+, 0.91; LR-, 0.96
Kang DW, et al. ²⁵⁹ 2003 14676047	Study type: Retrospective analysis of a natural history study Size: N=172 (26 with AMIMICC)	Inclusion criteria: Final diagnosis of ischemic stroke who had an acute lesion corresponding to a clinical syndrome on DWI performed within 24 h of stroke onset Exclusion criteria: None given	End Point: • Multiple lesions in multiple vascular territories (in the unilateral anterior circulation, in the posterior circulation, in bilateral anterior circulations, or in anterior and posterior circulations) • Stroke etiologic classification was by the TOAST criteria Results: • AMIMCC: CE, 65%; other determined, 15%; undetermined, 20%	AMIMCC was a moderate predictor of a CE etiologic classification: sensitivity, 24%; specificity, 91%; PPV, 65%; NPV, 64%; LR+, 2.67; LR-, 0.84

			CE occurred in 9/26 (35%) patients with AMIMCC and 53/146 (36%) patients without AMIMCC (<i>P</i> =1.0)	
Roh JK, et al. ²⁵ 2000 <u>10700505</u>	Study type: Consecutive patients admitted to stroke unit Size: N=329 (31 with AMIMCC)	Inclusion criteria: Underwent both conventional MRI and DWI within 4 d of stroke Exclusion criteria: None given	 End Point: On the basis of the topographical patterns, we divided patients with acute multiple brain infarcts into 4 categories: group A, in 1 cerebral hemisphere in the anterior circulation; group B, in the bilateral cerebral hemispheres in the anterior circulation; group C, in the posterior circulation; and group D, in both the anterior and posterior circulations Stroke etiologic classification was by the TOAST criteria Results: AMIMCC (Groups B + D): CE, 29%; other determined, 65%; undetermined, 6% 	AMIMCC was poor predictor of CE etiologic classification: PPV 0.29

Abbreviations: AF indicates atrial fibrillation; AMIMCC, acute multiple infarcts in multiple cerebrovascular circulations; ASCO, atherosclerosis, small vessel disease, cardiac source, other causes; CE, cardioembolic; CI, confidence interval; DWI, diffusion-weighted imaging; h, hours; HR, hazard ratio; LR+, positive likelihood ratio, LR-, negative likelihood ratio; MRI, magnetic resonance imaging; N/A, not available; NPV, negative predictive value, OR, odds ratio; PAF,paroxysmal atrial fibrillation; PPV, positive predictive value; RR, relative risk; TIA, transient ischemic attack; and TOAST, Trial of Org 10172 in Acute Stroke Treatment.

Literature search topic: Association of AMIMCC with stroke etiologic classification

Table LXII. Nonrandomized Trials, Observational Studies, and/or Registries of Acute Infarct Topography and Detection of Atrial Fibrillation by Long Term Monitoring

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Sudacevschi V, et al. ²⁶⁶ 2016 <u>27495831</u>	Study type: Retrospective analysis of patients with cryptogenic stroke or TIA who underwent 21-day rhythm cardiac Holter monitoring Size: N=171	Inclusion criteria: Cryptogenic minor stroke or TIA with both exploitable brain MRI and 21-day rhythm cardiac Holter monitoring Exclusion criteria: None given	1° end point: MRI chart analysis included rating the pattern of recent brain infarction (when present) on diffusion-weighted axial sequences as follows: 1 or both brain hemispheres affected; anterior or posterior circulation; or recent infarction aspect (territorial or lacunar, multiple or unique spot) Results: Atrial fibrillation/flutter was detected with Holter monitoring in 26 patients (15% of the sample) No significant association was found between detection of	No significant association was found between detection of PAF and recent brain MRI pattern
			PAF and recent brain MRI_pattern including bilateral hemisphere or anterior and posterior circulation	

CRYSTAL AF Bernstein RA, et al. ²⁶⁴ 2015 26182860	Study type: Retrospective image analysis of RCT; patients were randomized to either standard monitoring according to local practice or insertable cardiac monitor insertion Size: N=441	Inclusion criteria: Stroke of unknown mechanism Exclusion criteria: Lacunar stroke	1° end point: first detection of AF Results: There were no acute lesion characteristics that were significantly more likely to be associated with the detection of AF by 12 mo; in particular, neither the type of lesion (cortical, subcortical, or both; border-zone, or lacunar), the size of lesion, nor the arterial distribution of acute lesions showed any significant association with the detection of AF at 12 mo	No significant association was found between subsequent detection of PAF and recent brain infarct pattern on MRI
Favilla CG, et al. ²⁶⁵ 2015 25851771	Study type: Retrospective cohort of consecutive patients who underwent 28-day mobile cardiac outpatient telemetry Size: N=227	Inclusion criteria: After cryptogenic stroke or transient ischemic stroke Exclusion criteria: None given	1° end point: Neuroimaging included CT or MRI of the brain, which was independently reviewed to classify acute and chronic infarctions by size (≤1.5 vs. >1.5 cm), location, and further characterized as cortical, subcortical, wedge-shaped, lacunar, border zone, and multiple territories (AMIMCC) Results: • AF was detected in 14% of patients (31 of 227) • Acute imaging findings did not correlate with detection of AF • PAF occurred in 6/31 (19%) patients with AMIMCC and 25/196 (13%) patients without AMIMCC (<i>P</i> =0.40)	 No significant association was found between subsequent detection of PAF and recent brain infarct pattern on MRI For AMIMCC and AF: sensitivity, 19%; specificity, 87%; PPV, 19%; NPV, 87%; LR+, 1.45; LR, 0.93
Rabinstein AA, et al. ²⁶³ 2013 23791469	Study type: Prospective, observational, case- control Size: N=128	Inclusion criteria: Patients with ischemic stroke within the previous 3 mo were invited to participate in the study after completing the evaluation for the cause of the ischemia Exclusion criteria: Documented history of AF_or atrial flutter of any duration,	1° end point: Detection of atrial fibrillation; radiological embolic pattern was operationally defined as an acute, wedge-shaped lesion based on the cortex, acute multiple brain infarctions on the diffusion-weighted imaging sequence of MRI, or concurrent bilateral or AMIMCC Results: • Episodes of PAF_were detected in 25 patients (19.5%) • Embolic pattern on brain imaging was found in 68% of patients with PAF vs. 75.7% of patients without PAF (<i>P</i> =0.44) • PAF occurred in 1/9 (11%) patients with AMIMCC and 24/119 (20%) patients without AMIMC (<i>P</i> =0.69)	No significant association was found between subsequent detection of PAF and recent brain infarct patterns on MRI For AMIMCC and PAF: sensitivity, 4%; specificity, 92%; PPV, 13%; NPV, 80%; LR+, 0.50; LR, 1.04

planned closure of a patent foramen ovale within the following
mo, use of antiarrhythmic agents, and
incomplete stroke work-up

Abbreviations: AF indicates atrial fibrillation; AMIM, acute multiple infarcts in multiple cerebrovascular circulations; CI, confidence interval; CT, computed tomography; HR, hazard ratio; LR, negative likelihood ratio; LR+, positive likelihood ratio; MRI, magnetic resonance imaging; NPV, negative predictive value; PAF, paroxysmal atrial fibrillation; PPV, positive predictive value; and TIA, transient ischemic attack.

Literature search topic: Infarct topography and detection of AF by long term monitoring

Table LXIII. Nonrandomized Trials, Observational Studies/or Registries of Early Carotid Revascularization

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Adachi K, et al. ²⁷⁵ 2017 27118378	Study type: Case series Size: N=16	Inclusion criteria: Symptomatic stroke treated with CAS; "hyperacute" phase <24 h of stroke onset, "advanced" phase <24 h of stroke-in- evolution after admission, "acute" phase 24 h to 2 wk post onset Exclusion criteria: N/A	1° end point: mRS at 90 d post CAS Results: CAS-treated patients with IV alteplase had mRS of 5 with ICH and brain swelling (2 patients); other patients (mix in "hyperacute," "advanced" and "acute" phases) with mRS scores between 1–3	Patients treated in "hyperacute" phase <24 h after stroke onset with IV alteplase and CAS may have higher risk of ICH or brain swelling CAS after IV alteplase may be safe in "advanced" and "acute" phases Very small case series, ambiguous definitions

Azzini C, et al. ²⁷⁴ 2016 <u>26712132</u>	Study type: Observational cohort study Size: N=34	Inclusion criteria: CEA after IV alteplase within 12 h of stroke onset; vulnerable plaque, stroke in evolution, or salvageable ischemic penumbra on CTP Exclusion criteria: N/A	1° end point: Stroke/death/MI and mRS at 90 d Results: 11 patients treated <12 h of symptom onset; all patients with clinical improvement after CEA; no hemorrhages; no perioperative strokes/no new strokes at 90 d; one fatal MI	Very early CEA after thrombolysis may be safe Only 11 patients treated early (<12 h); the rest within 2 wk
Kazandjian C, et al. ²⁷³ 2016 27109793	Study type: Single- center retrospective review Size: N=114	Inclusion criteria: CEA after symptomatic acute ischemic stroke; CEA within 2 wk of stroke Exclusion criteria: Mixed topography stroke	1° end point: 30-day death or stroke rate Results: Group I with territorial infarct, Group II with border zone infarct: one death and one stroke in each group (2% vs. 14%); NIHSS predictive of complications	CEA after border zone infarction resulted in more complications than territorial infarctions Small series, findings not clinically meaningful Stroke heterogeneity is factor in complication rates for urgent CEA Higher NIHSS correlates with complications
Johannson E, et al. 408 2016 26747885	Study type: 2 prospective hospital based registries and on prospective population-based registry Size: N=377	Inclusion criteria: Symptomatic carotid stenosis Symptoms within 6 mo Eligible for CEA Exclusion criteria: CEA within 24 h	1° end point: Ipsilateral recurrent stroke or retinal artery occlusion Results: (for initial event of stroke from Fig 3) • 0–2 d: 6% • 0–7 d: 9%	Majority of recurrent stroke within 7 d occurs within 2 d
Vasconcelos V, et al. ²⁷⁶ 2016 27611108	Study type: RCT review Size: 1 RCT	Inclusion criteria: RCTs comparing CEA/CAS <48 h vs. delayed Rx (>48 h) Exclusion criteria: N/A	1° end point: Combined risk of death/stroke <30 d of surgery; combined risk of preoperative death/stroke <30 d of surgery Results: No high-quality evidence to support early revascularization	No recent high-quality evidence in favor of/opposed to early vs. late carotid revascularization for symptomatic disease Overall quality of evidence very low (one RCT with 40 patients)

Bazan H, et al. 409 2015 26412434	Study type: Retrospective case series Size: N=762	Inclusion criteria: Symptomatic TIA/stroke treated with CEA or CAS Exclusion criteria: Intervention beyond 2 wk; non-treated (CEA or CAS) patients	1° end point: 30-d stroke/death/MI Results: Mean time to CEA/CAS 2.4 d; no difference in bleeding complications between patient receiving IV alteplase or no alteplase	No difference in bleeding complications with IV alteplase in relatively short (2.4 d) interval to treat symptomatic carotid stenosis Strokes were mild/moderate (NIHSS <10)
Chisci E, et al. ⁴¹⁰ 2015 25463336	Study type: Retrospective single center review Size: N=322	Inclusion criteria: Symptomatic carotid stenosis >60%; mild acute deficit (NIHSS <5) Exclusion criteria: Severe neurological deficits	1° end point: 30-d NIHSS Results: 2 groups (early CEA <2 wk; late CEA 15–30 d); no significant differences in 30-day adverse outcomes (<i>P</i> =0.03; CI, 0.9–25.7); no deaths; 4 strokes (1.2 %), 4 MI (1.2%); 30-day improvement in NIHSS associated with early CEA	 Reducing time to CEA seems safe Mild deficits (NIHSS <5) Limited data for CEA <48 h vs. 48 h-2 wk
De Rango P, et al. ²⁶⁹ 2015 26470773	Study type: Meta- analysis Size: N/A	Inclusion criteria: Literature within 8 y reporting periprocedural stroke/death after CEA/CAS; 0–48 h, 0– 7 d; 0–15 d Exclusion criteria: N/A	1° end point: Peri-procedural stroke Results: • 47 studies (35 CEA, 7 CAS, 5 both); hyper acute stroke risk (0–48 h) 5.3% CEA, but different between patients presenting with TIA vs. stroke (2.7% vs. 8%) • Similar risks with CAS (2.1% vs. 7.9%) • Rates of stroke risk low and similar with 0- to 7-day wait and 0- to 15-day wait	Patients with TIA presentation did much better than stroke presenting patients when treated <48 h Patients presenting with stroke treated within 48 h with CEA/CAS had very high risk of stroke (8%/7.9%) With thrombolysis and CAS, only 2 studies both showed low risk (3.9%) Revascularization at 0−7 d and 0−15 d have similar rates of stroke, and are low, with both CEA and CAS (<5%)

Devlin TG, et al. ⁴¹¹ 2015 25194548	Study type: Case series Size: N=3	Inclusion criteria: Large acute stroke; CTP with large area of ischemic penumbra Exclusion criteria: Intracranial thromboembolic occlusion	1° end point: Postoperative NIHSS at 5 and 30 d Results: NIHSS drop to 7.6 at 5d and to 4.7 at 30 d; no perioperative deaths	Emergent CEA should be considered in patients presenting with large acute stroke with favorable CTP findings of brain tissue "at risk" Mean NIHSS 19.3; mean time to revascularization with CEA 4.5 h Tiny case series, highly selected patients, no controls CEA can be performed with an acceptable risk in properly selected symptomatic patients within 48 h after TIA or SIE. The benefits of early CEA in symptomatic patients include the prevention of recurrent stroke
Steglich-Arnholm H, et al. ⁴¹² 2015 <u>26345413</u>	Study type: Retrospective single center Size: N=47	Inclusion criteria: Carotid occlusion/high grade stenosis and intracranial thrombosis Exclusion criteria: N/A	1° end point: NIHSS post-procedure and 90 d Results: Mean time to recanalization 311 mins; "favorable" outcome at 90 d in 68% of patients; 4% symptomatic ICH, 9% death	 Median NIHSS 16 in cohort 85% received IV alteplase Thrombectomy assisted by CAS may be safe Clinically meaningful rate of stroke and death
Stromberg S, et al. ²⁷² 2015 25548062	Study type: Retrospective Size: N=397	Inclusion criteria: Patients with ultrasound at single hospital 2004–2006, 2010–2012 with ≥70% symptomatic carotid stenosis Exclusion criteria: Major stroke not suitable for CEA	1° end point: Recurrent stroke by time after initial event Results: (for initial event of stroke) • 0–2 d: 3.8% • 0–7 d: 6.7% • 0–30 d: 10.8%	Majority of recurrent stroke within 7 d occurs within 2 d

Ferrero E, et al. ⁴¹³ 2014 24011816	Study type: Retrospective case series Size: N=3023	Inclusion criteria: Symptomatic carotid artery stenosis with TIA, CTIA, stroke in evolution (SIE) treated with CEA; early CEA (<48 h) in 176 patients Exclusion criteria: Disabling neurological deficit (NIHSS >6), cerebral lesions >3 cm; hemorrhage; MCA occlusion; non- surgical candidate	1° end point: Rate of stroke, MACEs, and death <30 d after CEA Results: Cumulative TIA/stroke/MI/death rate 3.9% at 30 d; stroke risk highest in group 3 (SIE) (not statistically significant at <i>P</i> =0.3151) at 7.6%	CEA can be performed with an acceptable risk in properly selected symptomatic patients within 48 h after TIA or SIE The benefits of early CEA in symptomatic patients include the prevention of recurrent stroke Stroke rate highest in SIE group Study excludes patients with neurological deficits implying small strokes not at risk of repercussion injury/hemorrhage
ANSYSCAP Johansson EP, et al. ²⁷¹ 2013 22494778	Study type: Prospective cohort with symptomatic carotid stenosis Size: N=230	Inclusion criteria: • Referred to Stroke Center from 8-1-2007 to 12-31-2009 • Symptoms within 6 mo • Eligible for CEA Exclusion criteria: N/A	1° end point: ipsilateral ischemic stroke by time after initial event Results: (for initial event of stroke from Fig 3) • 0–2 d: 7.5% • 0–7 d: 9.5% • 0–14 d: 14%	Majority of recurrent stroke within 14 d occurs within 2 d
Marnane M, et al. ²⁷⁰ 2011 21849640	Study type: Population-based prospective cohort of ischemic stroke >1 y Size: N=36 with ipsilateral carotid stenosis	Inclusion criteria: Ischemic stroke with brain imaging or pathology Carotid artery imaging Exclusion criteria: TIA, hemorrhagic stroke, periprocedural stroke, carotid occlusion or intracranial stenosis	1° end point: Recurrent stroke by time after initial stroke Results: • 0–72 h: 5.6% • 0–7 d: 5.6% • 0–14 d: 8.3%	Majority of recurrent stroke within 14 d occurs within 72 h

Ois A, et al. ²⁶⁸ 2009 19498196	Study type: Single center retrospective series Size: N=163	Inclusion criteria: First ever mild ischemic stroke (NIHSS <7) or TIA; carotid stenosis >50% Exclusion criteria: Carotid occlusion, NIHSS >6, advanced age, comorbidity, cardiac disease	1° end point: Neurological recurrence (new TIA or stroke) or increase of 4 points on NIHSS at 2 wk Results: 27.6% with NR; 20.9% in first 72 h, 6.7% between 72 h and 7 d, 3.7% at 14 d	Only represented 14.1% of ischemic strokes presenting Mild strokes only Results suggest high risk of recurrent neurological recurrence in first 72 h
--	--	---	--	--

Abbreviations: CAS indicates carotid artery stenting; CEA, carotid endarterectomy; CI, confidence interval; CTIA, crescendo transient ischemic attack; CTP, computed tomography perfusion; h, hour; HR, hazard ratio; ICH, intracerebral hemorrhage; IV, intravenous; MACE, major adverse cardiac event; MCA, middle cerebral artery; MI, myocardial infarction; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; RCT, randomized clinical trial; SIE, stroke in evolution; TIA, transient ischemic attack; and y, year.

Literature search topic: Carotid endarterectomy and carotid artery stenting timing AND Complications after acute carotid endarterectomy or stenting AND Symptomatic carotid stenosis and early recurrent stroke AND Risk of early carotid intervention

Table LXIV. Nonrandomized Trials, Observational Studies, and/or Registries of Intracranial Atherosclerotic Stenosis

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
SONIA Liebeskind DS, et al. ²⁸⁶ 2014 <u>25337084</u>	Study type: Prospective, multicenter study aimed at validating the ability of TCD and MRA to diagnose intracranial atherosclerosis compared with catheter angiography; CTA analysis was not a primary aim of the SONIA trial, and was added as an exploratory aim after the trial began	Inclusion criteria: SONIA patients had the same inclusion and exclusion criteria as WASID patients with the exception of not requiring a positive angiogram; all SONIA patients had to be identified before their angiogram to be eligible for the study Exclusion criteria: WASID	1° end point: PPVs and NPVs Results: • PPV of CTA was only 46.7% (95% CI, 21.3–73.4), and NPV was 73.0% (95% CI, 55.9–86.2) • For DSA stenosis defined as 70%–99%, the PPV of CTA was 13.3% (95% CI, 1.7–40.5), and the NPV was 83.8% (95% CI, 68.0–93.8)	CTA can noninvasively identify 50%–99% intracranial large artery stenosis with decent NPV, but poor PPV Abnormal findings on CTA require angiography to reliably identify stenosis

SONIA Feldmann E, et al. ²⁸⁵ 2007 <u>17409371</u>	Size: N=21 Study type: Prospective, multicenter study aimed at validating the ability of TCD and MRA to diagnose intracranial	Inclusion criteria: SONIA patients had the same inclusion and exclusion criteria as WASID patients with the exception of not requiring a positive	1° end point: PPVs and NPVs Results: For prospectively tested noninvasive test cutpoints: • TCD: PPV 36% (95% CI, 27–46); NPV, 86% (95% CI, 81 to 89) • MRA: PPV 59% (95% CI, 54–65); NPV, 91% (95% CI, 89–93)	Both TCD and MRA noninvasively identify artery stenosis with decent NPV, but poor PPV Abnormal findings on TCD or MRA require angiography to reliably identify stenosis
	atherosclerosis compared with catheter angiography Size: N=407	angiogram; all SONIA patients had to be identified before their angiogram to be eligible for the study Exclusion criteria: WASID	For cutpoints modified to maximize PPV, they were: • TCD: PPV 50% (95% CI, 36–64), NPV 85% (95% CI, 81–88) • MRA: PPV 66% (95% CI, 58–73), NPV 87% (95% CI, 85–89)	

Abbreviations: CI indicates confidence interval; CTA, computed tomography angiography; DSA, digital subtraction angiography; MRA, magnetic resonance angiography; NPV, negative predictive value; PPV, positive predictive value; and TCD, transcranial Doppler.

Literature search topic: MRA intracranial, non-invasive imaging intracranial AND CTA intracranial, non-invasive imaging

Table LXV. Randomized Clinical Trials of Intracranial Atherosclerotic Stenosis

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary and Conclusions
WASID/ SAMMPRIS Chaturvedi S, et al. ²⁸⁴ 2015 26251251	Aim: To compare the SAMMPRIS primary end point between patients in the WASID and SAMMPRIS and evaluate the impact of baseline characteristics on the differences in outcome Study type: Post-hoc analysis of 2 RCTs	Inclusion criteria: SAMMPRIS medical patients and WASID patients meeting SAMMPRIS eligibility criteria Exclusion criteria:	Intervention: SAMMPRIS AMM (n=227) Comparator: WASID AMM (n=143)	1° end point: The primary end point was stroke or death within 30 d after enrollment or after a revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the qualifying artery beyond 30 d:	N/A	Both studies were stopped early before full projected enrollment	After adjustment for confounding baseline characteristics, WASID patients had an almost 2-fold higher risk of the SAMMPRIS primary end point, which supports, but

Cina. CAMMADDIO NI007	/// CID ==4	1	The same altered at		doos not ===::=
Size: SAMMPRIS N=227,	WASID and		The unadjusted		does not prove,
WASID N=143	SAMMPRIS		comparison of the		the hypothesis
			SAMMPRIS primary end		that the lower
			point showed a		rate of the
			significantly higher risk for		primary end
			WASID patients (<i>P</i> =0.009,		point in the
			log-rank test) with 12 mo		medical arm of
			Kaplan–Meier estimates of		SAMMPRIS
			21.9% in WASID and		compared with
			12.6% in SAMMPRIS and		WASID patients
			HR, 1.9 (95% CI, 1.2–3.0)		was as a result
			The analyses identified		of the AMM
			the following confounding		used in
			factors that varied		SAMMPRIS;
			between the studies and		however, this
			that conferred a higher		comparison to
			risk: lack of statin use at		historical
			enrollment (HR, 1.8; 95%		controls does
			CI, 1.1–2.9; <i>P</i> =0.027) that		not provide
			was more prevalent		definitive
			among WASID patients		evidence, and
			(39% vs. 14%, <i>P</i> <0.0001)		the role of dual
			and prior infarcts in the		platelet therapy
			territory of the		remains to be
					demonstrated by
			symptomatic vessel (HR,		RCT
			1.8; 95% CI, 1.1–2.9;		1101
			P=0.023) that was more		
			prevalent among		
			SAMMPRIS patients (34%		
			vs. 22%, <i>P</i> =0.015); the		
			HR for WASID vs.		
			SAMMPRIS adjusted for		
			these 2 characteristics		
			was 1.9 (95% CI, 1.1–3.2)		
			Cofety and nainty		
			Safety end point:		
			N/A		

	1	T		1	1		1
SAMMPRIS Derdeyn CP, et al. ²⁸² 2014	Aim: To compare AMM alone to AMM plus PTAS with the use of the Wingspan stent system in	Inclusion criteria: TIA or nondisabling stroke within 30	Intervention: : AMM plus PTAS with the use of the Wingspan	1° end point: The primary end point was stroke or death within 30 d after enrollment or after a	Beyond 30 d, 21 (10%) of 210 patients in the medical group	Enrollment was stopped after 451 patients underwent	The early benefit of AMM over stenting with the
<u>24168957</u>	high-risk patients with intracranial arterial stenosis Study type: RCT, final results	d before enrollment, attributed to angiographically verified stenosis of 70% to 99% of the diameter	stent (n=224) Comparator: AMM (n=227)	revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the qualifying artery beyond 30 d:	and 19 (10%) of 191 patients in the stenting group had a primary end point	randomization, because the 30- day rate of stroke or death was 14.7% in the PTAS group (nonfatal stroke,	Wingspan stent for high-risk patients with intracranial stenosis persists over extended follow-up
	Size: N=451	of a major intracranial artery, mRS of ≤3, age ≥30 y and ≤80 y Exclusion criteria: Tandem extracranial or intracranial stenosis (70%–99%) or occlusion that is proximal or distal to the target intracranial lesion; any hemorrhagic infarct within 14 d prior or any hemorrhagic infarct within 15–30 d that is associated with or other intracranial hemorrhage		 During a median follow-up of 32.4 mo, 34 (15%) of 227 patients in the medical group and 52 (23%) of 224 patients in the stenting group had a primary end point event The cumulative probability of the primary end points was smaller in the medical group vs. the PTAS group (<i>P</i>=0.0252) Safety end point: The occurrence of the following adverse events was higher in the PTAS group than in the medical group: any stroke (59 [26%] of 224 patients vs. 42 [19%] of 227 patients; <i>P</i>=0.0468) and major hemorrhage (29 [13%] of 224 patients vs. 10 [4%] of 227 patients; <i>P</i>=0.0009) 		12.5%; fatal stroke, 2.2%) and 5.8% in the medicalmanagement group (nonfatal stroke, 5.3%; non–stroke-related death, 0.4%) (<i>P</i> =0.002)	Our findings lend support to the use of AMM rather than PTAS with the Wingspan system in high- risk patients with atherosclerotic intracranial arterial stenosis

SAMMPRIS Lutsep HL, et al. ²⁸³ 2015 25593135	Aim: To compare the outcomes between patients whose QE for SAMMPRIS occurred on versus off AT Study type: Post-hoc analysis of RCT Size: N=451	(subarachnoid, subdural, epidural) within 30 d; non-atherosclerotic cause or unequivocal cardiac sources of embolism Inclusion criteria: TIA or nondisabling stroke within 30 d before enrollment, attributed to angiographically verified stenosis of 70% to 99% of the diameter of a major intracranial artery, mRS of ≤3, age ≥30 y and ≤80 y Exclusion	Intervention: AMM plus PTAS with the use of the Wingspan stent (n=224) Comparator: AMM (n=227)	1° end point: The primary end point was stroke or death within 30 d after enrollment or after a revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the qualifying artery beyond 30 d: • Among the 284/451 (63%) patients who had their QE on AT, the 2-year primary end point rates were 15.6% for those randomized to AMM (n=140) and 21.6% for	N/A	Enrollment was stopped after 451 patients underwent randomization, because the 30-day rate of stroke or death was 14.7% in the PTAS group (nonfatal stroke, 2.2%) and 5.8% in the medicalmanagement group (nonfatal stroke, 5.3%;	The benefit of AMM over PTAS is similar in patients on vs. off AT at the QE, and that failure of AT is not a predictor of increased risk of a primary end point
		intracranial artery, mRS of ≤3, age ≥30 y		(63%) patients who had their QE on AT, the 2-year primary end point rates were 15.6% for those		stroke, 2.2%) and 5.8% in the medical- management	
		criteria: Tandem extracranial or intracranial		(n=140) and 21.6% for PTAS (n=144; P=0.043, log-rank test) In the 167 patients not on AT, the 2-year primary		stroke, 5.3%; non-stroke- related death, 0.4%) (<i>P</i> =0.002)	
		stenosis (70%– 99%) or occlusion that is proximal or distal to the		end point rates were 11.6% for AMM (n=87) and 18.8% for PTAS (n=80; P=0.31, log-rank test)			
		target intracranial lesion; any hemorrhagic		Within both treatment groups, there was no difference in the time to the primary end point			

		infarct within 14 d prior or any hemorrhagic infarct within 15–30 d that is associated with or other intracranial hemorrhage (subarachnoid, subdural, epidural) within 30 d; nonatherosclerotic cause or unequivocal cardiac sources of embolism		between patients who were on or off AT (AMM, P=0.96; PTAS, P=0.52; log-rank test) Safety end point: N/A			
TOSS-2 Jung JM, et al. ²⁷⁹ 2012 <u>22910894</u>	Aim: To determine if initial lesion pattern can predict stroke recurrence in patients with symptomatic ICAS Study type: Post-hoc subgroup analysis of RCT Size: N=353	Inclusion criteria: • Acute ischemic stroke patients aged ≥35 y with symptomatic ICAS within 2 wk of symptom onset • Only patients who underwent diffusion- weighted imaging and fluid attenuation inversion recovery imaging at baseline with a follow-up fluid attenuation	Intervention: Cilostazol group (100 mg cilostazol twice daily) with aspirin (75–150 mg once daily) to all subjects for 7 mo (n=not provided for this subgroup analysis) Comparator: Clopidogrel group (75 mg clopidogrel once daily). with aspirin (75–150 mg once daily) to all subjects for 7 mo (n=not	1° end point: Of the 353 patients, 44 (12.5%) had new ischemic lesion on follow-up FLAIR in the initial symptomatic ICAS territory Clinical recurrence occurred in 13 (3.7%) patients, who all presented with ischemic stroke, not TIA Safety end point: N/A	N/A	Short (7 mo) follow-up	Intracranial atherosclerosis is associated with a high risk of recurrent stroke, often in the same arterial distribution

		inversion recovery imaging at 7 mo were included in this subgroup analysis Exclusion criteria: Nonathero- sclerotic vasculopathy, such as arterial dissection or moyamoya disease Thrombolytic therapy for the index stroke Embolic heart disease Significant	provided for this subgroup analysis)				
SAMMPRIS Chimowitz MI, et al. ²⁸¹	Aim: To compare AMM alone to AMM plus PTAS with the use of the	stenosis of arteries proximal to the symptomatic stenosis • Scheduling for revascularizatio n for the stenosis Inclusion criteria: TIA or nondisabling	Intervention: AMM plus PTAS with the use of	1° end point: • The primary end point was stroke or death within	The rates of any stroke were significantly	Enrollment was stopped after 451 patients	In patients with intracranial arterial stenosis.
2011 21899409	Wingspan stent system in high-risk patients with intracranial arterial stenosis	stroke within 30 d before enrollment, attributed to angiographically verified stenosis	the Wingspan stent (n=224) Comparator: AMM (n=227)	as stroke of death within 30 d after enrollment or after a revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the	higher in the PTAS group than in the medical- management group (<i>P</i> =0.03)	underwent randomization, because the 30- day rate of stroke or death was 14.7% in	AMM was superior to PTAS with the use of the Wingspan stent system, both

Study type: RCT, interim	of 70%–99% of	qualifying artery beyond	the PTAS group because the risk
results	the diameter of	30 d	(nonfatal stroke, of early stroke
Tesuits	a major	The probability of the	12.5%; fatal after PTAS was
Size : N=451	intracranial	occurrence of a primary	stroke, 2.2%) high and
Size. N-431	artery, mRS of		and 5.8% in the because the risk
	≤3, age ≥30 y	end-point event over time	medical- because the risk
		differed significantly	
	and ≤80 y	between the two treatment	management AMM alone was
	Evaluation	groups (<i>P</i> =0.009), with 1-y	group (nonfatal lower than
	Exclusion	rates of the primary end	stroke, 5.3%; expected
	criteria:	point of 20.0% in the	non-stroke-
	Tandem	PTAS group and 12.2% in	related death,
	extracranial or	the medical-management	0.4%) (<i>P</i> =0.002)
	intracranial	group	
	stenosis (70%–		
	99%) or	Safety end point:	
	occlusion that is	 The rates of any major 	
	proximal or	hemorrhage were	
	distal to the	significantly higher in the	
	target	PTAS group than in the	
	intracranial	medical-management	
	lesion; any	group (<i>P</i> <0.001)	
	hemorrhagic	The difference between	
	infarct within 14	the two groups in the rate	
	d prior or any	of death or any stroke	
	hemorrhagic	(16.3% vs. 23.2%) was	
	infarct within	not significant (<i>P</i> =0.06)	
	15–30 d that is		
	associated with		
	or other		
	intracranial		
	hemorrhage		
	(subarachnoid,		
	subdural,		
	epidural) within		
	30 d; non-		
	atherosclerotic		
	cause or		
	unequivocal		
	cardiac sources		
	of embolism		

WASID Turan TN, et al. ²⁷⁸ 2009 19095991	Aim: To determine if patients with intracranial stenosis who present with TIA or stroke while on antithrombotic medications are at higher risk of recurrent ischemic stroke than patients who are not on antithrombotic medications at the time of their initial symptoms Study type: Post-hoc analysis of RCT Size: ON, N=299; OFF, N=269	Inclusion criteria: TIA or stroke within 90 d before randomization attributable to angiographically proven 50% to 99% stenosis of a major intracranial artery, mRS of ≤3, and age ≥40 y Exclusion criteria: Tandem 50% to 99% stenosis of the extracranial carotid artery, nonatherosclerot ic stenosis of an intracranial artery, a cardiac source of embolism, and a contraindication to aspirin or warfarin therapy	Intervention: Dose-adjusted warfarin (target international normalized ratio, 2 to 3) (n=289) Comparator: 1300 mg aspirin per d (n=280)	1° end point: No statistically significant difference in the percentage of patients with the combined end point of stroke or vascular death (21% vs. 23%; HR [ON/OFF], 0.91; 95% CI, 0.64–1.29; <i>P</i> =0.59) Safety end point: No statistically significant difference in the percentage of major hemorrhage during follow-up (6.7% vs. 4.8%; HR [ON/OFF], 1.32; 95% CI, 0.66–2.65; <i>P</i> =0.44)	No statistically significant difference in the percentage of patients with stroke in the territory of the stenotic artery (13% vs. 14%; HR [ON/OFF], 0.90; 95% CI, 0.57–1.39; P=0.61)	Trial stopped early by DSMB due to increased mortality in warfarin group with 569 of 806 subjects enrolled	Patients with intracranial stenosis who fail antithrombotic therapy are not at higher risk of stroke than those who do not fail antithrombotic therapy; both are at high risk for stroke in the territory of the stenotic artery
---	--	---	---	---	---	--	--

Chimowitz MI, et al. ²⁸⁰ 2005 15800226	Aim: To compare warfarin vs. aspirin for prevention of vascular events in patients with symptomatic atherosclerotic intracranial stenosis Study type: RCT Size: N=569	Inclusion criteria: TIA or stroke within 90 d before randomization attributable to angiographically proven 50% to 99% stenosis of a major intracranial artery, mRS of ≤3, and age ≥40 y Exclusion criteria: Tandem 50% to 99% stenosis of the extracranial carotid artery, nonatherosclerot ic stenosis of an intracranial artery, a cardiac source of embolism, and a contraindication to aspirin or warfarin therapy	Intervention: Dose-adjusted warfarin (target international normalized ratio, 2 to 3) (n=289) Comparator: 1300 mg aspirin per d (n=280)	1° end point: • The primary end point was ischemic stroke, brain hemorrhage, or death from vascular causes other than stroke • The primary end point occurred in 22.1% of the patients in the aspirin group and 21.8% of those in the warfarin group (HR, 1.04; 95% CI, 0.73–1.48; P=0.83). Safety end point: The rate of death was statistically significantly higher among patients assigned to warfarin (4.3% in the aspirin group vs. 9.7% in the warfarin group; HR, 0.46; 95% CI, 0.23–0.90; P=0.02)	Major hemorrhages occurred significantly more often among patients assigned to warfarin (3.2% in the aspirin group vs. 8.3% in the warfarin group; HR, 0.39; 95% CI, 0.18–0.84; <i>P</i> =0.01)	Trial stopped early by DSMB due to increased mortality in warfarin group with 569 of 806 subjects enrolled	Warfarin was associated with significantly higher rates of adverse events and provided no benefit over aspirin in this trial Aspirin should be used in preference to warfarin for patients with intracranial arterial stenosis
---	---	---	---	---	---	--	--

Abbreviations: AMM indicates aggressive medical management; AT, anti-thrombotic therapy; CI, confidence interval; DSMB, Data and Safety Monitoring Board; FLAIR, fluid-attenuated inversion recovery; HR, hazard ratio; ICAS, intracranial arterial stenosis; N/A, not available; PTAS, percutaneous transluminal angioplasty and stenting; QE, qualifying event; RCT, randomized clinical trial; and TIA, transient ischemic attack.

Literature search topic: MRA intracranial, non-invasive imaging intracranial AND CTA intracranial, non-invasive imaging

Table LXVI. Selected Nonrandomized Trials, Observational Studies, and/or Registries Relevant to Cardiac Monitoring for Atrial Fibrillation and Stroke Prevention

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Sposato LA, et al. ²⁸⁸ 2015 25748102	Study type: Review Size: N=11,658 patients (50 studies)	Inclusion criteria: Randomized controlled trials or prospective/retrospective cohort studies Include patients with diagnosis of ischemic stroke or TIA with neuroimaging studies ruling out hemorrhage Provide the number of patients without previously known atrial fibrillation undergoing post-stroke atrial fibrillation screening and the number of patients diagnosed with atrial fibrillation after stroke or TIA, irrespective of whether this was the primary end point Written in English Exclusion criteria: Per individual trials	• Cardiac monitoring methods stratified into four sequential phases of screening: phase 1 (emergency room) consisted of admission ECG; phase 2 (in hospital) comprised serial ECG, continuous inpatient ECG monitoring, continuous inpatient cardiac telemetry, and in-hospital Holter monitoring; phase 3 (first ambulatory period) consisted of ambulatory Holter; and phase 4 (second ambulatory period) consisted of mobile cardiac outpatient telemetry, external loop recording, and implantable loop recording • The primary end point was the proportion of patients newly diagnosed with atrial fibrillation for each method and each phase, and for the sequential combination of phases Results: Phase 1: 7.7% (95% CI, 5.0–10.8) Phase 2: 5.1% (95% CI, 3.8–6.5) Phase 3: 10.7% (95% CI, 5.6–17.2) Phase 4: 16.9% (95% CI, 13.0–21.2) Overall: 23.7% (95% CI, 17.2–31.0)	By sequentially combining cardiac monitoring methods, atrial fibrillation might be newly detected in nearly a quarter of patients with stroke or TIA; accordingly, more patients could be treated with oral anticoagulants, and more stroke recurrences prevented However, although probable, the causal association between newly detected post-stroke atrial fibrillation and stroke remains to be confirmed Atrial fibrillation detected exclusively after stroke would not always be an indisputable argument in favor of anticoagulation Whether cases of post-stroke atrial fibrillation diagnosed within a few d or many mo after the cerebrovascular event have similar risks of recurrent stroke is also unknown
Limone BL, et al. ⁴¹⁴ 2014 25018102	Study type: Review of pharmacologic stroke prevention in atrial fibrillation cost- effectiveness models	Inclusion criteria: • Evaluations of cost effectiveness (e.g., considered both costs and effectiveness) of pharmacologic agents	Results: • Inputs were sometimes dated and selectively chosen from the literature • Lack of consideration of varying international normalized ratio control in results	Pharmacologic stroke prevention in atrial fibrillation cost-effectiveness models have been extensively reported, but many may have flaws giving reason for decision makers to use caution

Size: 30 models	using Markov or discrete event simulation models • Published in the English language and available as a full-text publication • Manufacturers' models reported as part of government reports (i.e., National Institute for Health and Clinical Excellence or Canadian Agency for Drugs and Technologies in Health)	 Use of a sole randomized trial to support comparative efficacy and safety assumptions Not including indirect costs in models conducted from the societal perspective Failure to conduct probabilistic sensitivity analysis (Monte Carlo simulation) 	
	Exclusion criteria: Models presented solely		
	at professional meetings		
	or available only in		
	abstract form		

Abbreviations: CI indicates confidence interval; ECG, electrocardiogram; and TIA, transient ischemic attack. **Literature search topic**: Prolonged cardiac monitoring for secondary stroke prevention

Table LXVII. Randomized Clinical Trials of Prolonged Cardiac Monitoring after Stroke with Clinical End Points

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Find- AFRANDOMISED Wachter R, et al. ²⁹⁴ 2017 28187920	Aim: To determine whether enhanced and prolonged rhythm monitoring was better for detection of AF than standard care procedures in patients with acute ischemic stroke	Inclusion criteria: Acute ischemic stroke (symptoms for ≤7 d) aged ≥60 y presenting with sinus rhythm and without history of AF	Intervention: Prolonged monitoring (10- day Holter- electrocardiogra m monitoring at baseline, and at 3- and 6-month	1° end point: AF or atrial flutter (≥30 s) within 6 mo after randomization and before stroke recurrence I: 14% C: 5% Difference 9.0% (95% CI, 3.4%–14.5%; P=0.002)	• Recurrent stroke within 12 mo I: 3.7% C:5.4% Difference 1.7% (95% CI, -2.5% to 5.9%; <i>P</i> =0.46)	Not specifically powered for clinical end points	No significant difference between groups in recurrent stroke or use of anticoagulation

	Study type: Controlled trial, prospective, unblended, blinded end point adjudication Size: N=398	Exclusion criteria: Severe ipsilateral carotid or intracranial artery stenosis	follow-up) (n=200) Comparator: Standard care procedures (at least 24 h of rhythm monitoring) (n=198)	Safety end point: None reported	• Oral anticoagulation at 12 mo I:18.1% C: 12.7% (<i>P</i> =0.17)		
CRYSTAL-AF Brachmann J, et al. ²⁹² 2016 26763225 Sanna T, et al. ²⁹¹ 2014 24963567	Aim: To determine if insertable cardiac monitor is more effective for detecting AF following cryptogenic stroke Study type: RCT, prospective, unblinded Size: N=441	Inclusion criteria: Age ≥40 y with cryptogenic stroke or TIA within 90 d Exclusion criteria: History of AF or atrial flutter, contraindication for anticoagulation	Intervention: Insertable cardiac monitor with 10 d of randomization (n=221) Comparator: ECG at discretion of site investigator (n=220)	1° end point: First detection of AF within 6 mo I: 8.9% C: 1.4% HR, 6.4 (95% CI, 1.9–21.7) Safety end point: 36 mo removal of insertable cardiac monitor due to infection or pocket erosion: I: 2.4%	• TIA or ischemic stroke at 6/12/36 mo: l: 5.2%/7.1%/9% C: 8.6%/9.1%/11% • First detection of AF within 12 mo /36 mo l: 12.4%/30.0% C: 2.0%/3.0% • Oral anticoagulation at 6/12/36 mo l: 10.1%/14.7%/38 .5% C: 4.6%/6.0%/8.3%	Not specifically powered for clinical end points	No significant difference between groups for clinical end points
IMPACT Martin DT, et al. ²⁹⁰ 2015 <u>25908774</u>	Aim: To determine if prompt initiation of anticoagulation when AF or atrial flutter occurred and stopping when arrhythmia abated would reduce stroke, systemic embolism or major bleeding	Inclusion criteria: Patients with implantable cardioverter defibrillators or resynchronizatio n devices Exclusion criteria: Permanent AF	Intervention: Anticoagulation based on CHADS2 and when AF or atrial flutter was present (n=992) Comparator: Anticoagulation based on clinical	1° end point: First occurrence of stroke, systemic embolism, or major bleeding (5430 pt-y) I: 2.4/100 pt-y C: 2.3/100 pt-y HR, 1.06 (95% CI, 0.75–1.51) Safety end point: Major bleeding	Thromboembolis m, HR: 0.88 (95% CI: 0.55–1.41) Ischemic stroke, HR, 0.79 (95% CI, 0.45–1.39) Major bleeding, HR,	Not specifically powered for clinical end points	No significant difference between groups for clinical end points

	Study type: RCT, prospective, unblinded Size: N=1990	or contraindication for anticoagulation	criteria by treating physicians (N=998)	I: 1.6/100 pt-y C: 1.2/100 pt-y HR: 1.39 (95% CI, 0.89– 2.17)	1.39 (95% CI, 0.89–2.17) • Initiated oral anticoagulation; I: 13.4% C: 11.6%		
EMBRACE Gladstone DJ, et al. ²⁹³ 2014 24963566	Aim: To determine if 30-day event triggered recorder is more effective for detecting AF following cryptogenic stroke Study type: RCT, prospective, unblinded Size: N=557	Inclusion criteria: Age ≥55 y with cryptogenic stroke or TIA within 6 mo Exclusion criteria: history of AF or atrial flutter	Intervention: 30-day event triggered recorder (n=280) Comparator: 24-h monitor (n=277)	1° end point: Atrial fibrillation ≥30 s l:16.1% C: 3.2% Safety end point: None reported	• Fatal ischemic Stroke I: 1 C:1 • Oral anticoagulation at 90 d I:18.6% C: 11.1%	Only fatal ischemic stroke reported	No difference between groups in fatal ischemic stroke
Higgins P, et al. ²⁸⁹ 2013 23899913	Aim: Detection of AF at 14 d Study type: RCT, prospective, unblinded Size: N=100	Inclusion criteria: TIA/ischemic stroke within 7 d in sinus rhythm Exclusion criteria: History of AF or atrial flutter, contraindication for anticoagulation	Intervention: 7- day cardiac monitoring (n=50) Comparator: Standard clinical practice (n=50)	1° end point: Paroxysms of AF at 14 d l: 44% C: 4% (P<0.001) Safety end point: "Serious adverse events" l: 0 C: 0	• Stroke, TIA, MI, and death I: 4 C: 4 • 14-day anticoagulation commenced I: 16% C: 0% (P<0.01)	Not specifically powered for clinical end points	No significant difference between groups for clinical end points

Abbreviations: AF indicates atrial fibrillation; C, Comparator group; CI, confidence interval; ECG, electrocardiogram; HR, hazard ratio; I, Intervention group; MI, myocardial infarction; N/A, not available; OR, odds ratio; pt-y, patient-year; RCT, randomized clinical trial; RR, relative risk; and TIA, transient ischemic attack.

Literature search topic: Prolonged cardiac monitoring for secondary stroke prevention

Table LXVIII. Randomized Clinical Trials of Secondary Stroke Prevention in Patients with Atrial Fibrillation

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
EAFT ²⁸⁷ 1993 <u>7901582</u>	Aim: To determine benefit of ASA or OAC in patient with non-rheumatic AF and recent TIA or minor ischemic stroke Study type: RCT, prospective; unblinded for OAC, blinded for ASA Size: Group 1: N=669 Group 2: N=338	Inclusion criteria: • TIA/ischemic stroke within 3 mo • AF by ECG at the time or paroxysmal • AF within preceding 24 mo Exclusion criteria: • Echocardio- graphic evidence of valvular disease • Indication or contraindication for ASA (Group1 & 2) or contraindication for OAC (Group 2) • CEA planned	Intervention: Group 1: OAC (n=225), ASA (n=230) Group 2: ASA (n=174) Comparator: Group 1: placebo (n=214) Group 2: placebo (n=164)	1° end point: Vascular death, stroke, MI, systemic embolism: • Group 1: OAC: 8%/y vs. placebo: 17%/y, HR, 0.53 (95% CI, 0.36–0.79) • OAC vs. ASA, HR, 0.60 (95% CI, 0.41–0.87) Safety end point: On treatment, major bleeding • OAC: 2.8%/y • ASA; 0.9%/y • Placebo: 0.7%/y	Stroke: OAC (4%/y) vs. placebo (12%/y), HR, 0.34 (95% CI, 0.20–0.57) OAC vs. ASA, HR, 0.38 (95% CI, 0.23–0.64)	AF was diagnosed by routine ECG	OAC superior to ASA and placebo for clinical end points

Abbreviations: AF indicates atrial fibrillation; ASA, acetylsalicylic acid; CEA, carotid endarterectomy; CI, confidence interval; ECG, electrocardiogram; HR, hazard ratio; MI, myocardial infarction; OAC, oral anticoagulation; RCT, randomized clinical trial; TIA, transient ischemic attack; and y, year.

Literature search topic: Prolonged cardiac monitoring for secondary stroke prevention

Table LXIX. Nonrandomized Trials, Observational Studies, and/or Registries of Cost-effectiveness of Echocardiography

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Year Published			2 33/3 3.J	- Commonic
Meenan RT, et al. ²⁹⁸ 2007 17409366	Study type: Model-based cost- effectiveness analysis with model parameters based on systematic evidence review related to effectiveness of echocardiography in newly diagnosed ischemic stroke patients Size: 7 echocardiographic imaging strategies and 2 non-testing strategies	Inclusion criteria: Studies addressing the evidence for associations between cardioembolic stroke and several echocardiographic lesions: LA thrombus, LV thrombus, atrial septal aneurysm, patent foramen ovale, aortic atheroma, LA myxoma, LA aneurysm, spontaneous echocardiographic contrast, valvular strands, mitral annular calcification, and mitral valve prolapse Exclusion criteria: Dilated cardiomyopathy, recent myocardial infarction, and infective endocarditis	Results: • All strategies containing TTE were dominated by others and were eliminated from the analysis • Assuming that AC reduces recurrent stroke risk from intracardiac thrombus by 43% over 1 y, TEE generated a cost per QALY of \$137,000 (relative to standard treatment) among patients with 5% thrombus prevalence • Cost per QALY dropped to \$50,000 in patients with at least 15% intracardiac thrombus prevalence, or, if an 86% relative risk reduction with AC is assumed, in patients with thrombus prevalence of at least 6% • Probabilistic analyses indicate considerable uncertainty around the cost-effectiveness of echocardiography across a wide range of intracardiac thrombus prevalence (pretest probability)	Current evidence on cost- effectiveness is insufficient to justify widespread use of echocardiography in stroke patients Additional research on recurrent stroke risk in patients with intracardiac thrombus and on the efficacy of AC in reducing that risk may contribute to a better understanding of the circumstances under which echocardiography will be cost-effective
AHRQ Evidence Report Meenan RT, et al. ²⁹⁶ 2002	Study type: This report discusses the effectiveness and cost-effectiveness of various imaging strategies for	Inclusion criteria: • Association of echocardiographic lesions with stroke in patients with potential sources of	1° end point: \$/QALY Results: • The eight testing strategies are compared with the strategy of treating all with standard medical therapy	Taken as a whole, our findings indicate that the links in the chain of evidence for the effectiveness of echocardiography in the management of patients with stroke are weak

12187569	evaluating and managing new stroke patients including TTE and TEE; costeffectiveness analyses are in the form of decision analyses Size: 210 articles	cardioembolic stroke or patients with and without new ischemic brain syndrome • Yield of echocardiography in patients with new ischemic brain syndrome • Operating characteristics of echocardiography in patients with potential sources of cardioembolic stroke Exclusion criteria: • No original data • Case series or case report (no comparison group) • Non-consecutive, non-random sample without description of selection criteria • Case report • Unable to distinguish results in patients with and without atrial fibrillation • Inappropriate reference standard	Only one strategy, performing TEE in patients with a history of cardiac disease, is undominated; the incremental cost-effectiveness ratio of this strategy is approximately \$300,000 per QALY For the purposes of this model, the only factor differentiating those with a cardiac history from those without it is the prevalence of intracardiac thrombus (5.0% in those with a cardiac history); thus, these results are most accurately interpreted as indicating that the incremental cost-effectiveness of TEE is approximately \$300,000 in patients with a prevalence (pretest probability) of intracardiac thrombus of 5%	The risk of recurrent stroke associated with most echocardiographic lesions and the efficacy of treatment in reducing that risk are unclear The estimated yield and accuracy of echocardiography in detecting intracardiac thrombus—the lesion typically considered most likely to convey modifiable risk of recurrent stroke—indicate that for unselected patients, TTE and TEE will produce at least as many false-positive as true-positive diagnoses Although TEE is generally more accurate than TTE, it is also more invasive and is associated with a small but quantifiable risk of major complications
McNamara RL, et al. ²⁹⁷ 1997 <u>9382398</u>	Study type: Markov model decision analysis Size: 9 strategies varying TTE, TEE, selection by cardiac	Inclusion criteria: 65-year-old patients with normal sinus rhythm and new onset stroke with four types of underlying pathological	1° end point: Visualization of left atrial thrombus as indication or anticoagulation, \$/QALY Results: • TEE in those with cardiac history was most cost-effective	"Cardiac history" included those with AF who would be anticoagulated regardless of TEE findings

histo	story, and use of	conditions: thrombi in	• TTE, alone or in sequence with TEE, was not cost-effective	
anti	ticoagulation	left atrium, other	compared with TEE	
		potential cardiac		
		sources of		
		embolization, aortic		
		plaque only, and no		
		identifiable cardiac		
		source of emboli		
		Exclusion criteria:		
		Obvious clinical		
		cause of stroke,		
		receiving		
		anticoagulants, or		
		antiplatelet agents at		
		the time of stroke		

Abbreviations: AC indicates anticoagulation; AF, atrial fibrillation; LA, left atrial; LV, left ventricular; TEE, transesophageal echocardiography; TTE, transthoracic echocardiography; QALY quality adjusted life year; RCT, randomized clinical trial; and y, year.

Literature search topic: Cost-effectiveness of echocardiography in acute stroke

Table LXX. Randomized Clinical Trials Of Secondary Stroke Prevention in Patients with Patent Foramen Ovale (PFO)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
REDUCE Sondergaard L, et al. ²⁹⁹ 2017 28902580	Aim: to determine the efficacy and safety of PFO plus antiplatelet therapy, as compared with antiplatelet therapy alone, for the prevention of recurrent clinical ischemic stroke or new brain infarction in patients with PFO who had had a cryptogenic stroke.	Major Inclusion Criteria: 18-59 years old cryptogenic, ischemic stroke within 180 days; PFO with right- to-left shunt, by transesophageal echocardiograph y (TEE); absence of an identifiable	Intervention: PFO closure with one of two devices plus antiplatelet therapy (n=441) Comparator: antiplatelet therapy alone (n=223)	•Co-1° end points: freedom from recurrent clinical ischemic stroke through at least 24 months: 6/441 (1.4%, 0.39/100 pt yrs) vs 12/223 (5.4%, 1.71 per 100 pt yrs) HR, 0.23; 95% CI, 0.09 - 0.62; P=0.002 AND	•In the PFO closure group, procedure-related serious adverse events occurred in 2.5% of the patients, and device-related serious adverse events in 1.4%.	Unblinded investigtors decided when to refer for blinded enpoint adjudication 4 x more lost to follow-up/withdrew than had stroke endpoints	Large number lost to follow-up/withdrew compared to number of stroke endpoint makes results unreliable Potential bias due to unblinded referral decisions for

	,			1	
Study Type: multicenter,	source of	incidence of new brain		Closure	endpoint
prospective, open-label,	thrombo-	infarct (defined as clinical	 Atrial fibrillation 	8.4%% (37/441)	adjudication
blinded endpoint	embolism in the	ischemic stroke or silent	or flutter	Medical only	,
adjudication, phase 3 RCT	systemic arterial	brain infarct detectable on	occurred in	14.3% (32/223)	
	circulation:	MRI through 24 months):	significantly		
Size: N=664 (2:1	vascular	22/383 (5.7%) vs 20/177	more	• 2.4 x more	
randomization)	imaging rules	(11.3%) <i>P</i> =0.048	patients in the	without final	
Tanasini Zation)	out other	Safety end point:	PFO closure	imaging than	
	potential	•In the PFO closure	group than in	had imaging	
	sources of	group,	the	endpoint	
	cerebral	procedure-related serious	antiplatelet-only	Closure	
	thrombo-	adverse events occurred	group (6.6% vs.	(58/441)	
	embolism (e.g.,		0.4%, <i>P</i> <0.001)	Medical only	
	dissection of the	in 2.5% of the patients, and device-related serious	0.4%, (~0.001)	(46/223)	
	aorta or neck	and device-related serious adverse events in 1.4%.		(40/223)	
	vessels, carotid	auverse events in 1.4%.			
	stenosis > 50%				
	and/or presence				
	of ulcerated				
	plaques, or				
	intracranial				
	stenosis > 50%);				
	no evidence of				
	hypercoagulable				
	state which				
	requires				
	anticoagulation				
	therapy.				
	Main				
	Major				
	Exclusion				
	Criteria: modifi				
	ed Rankin Scale				
	(mRS) >/= 3;				
	other potential				
	source(s) of				
	cardio-				
	embolism; prior				

CLOSE Mas J, et al.300 2017 28902593	Aim: to compare transcatheter closure of PFO plus long-term antiplatelet therapy with antiplatelet therapy alone and to compare oral anticoagulant therapy with antiplatelet therapy for the prevention of stroke recurrence in patients with recent cryptogenic stroke attributed to PFO with an atrial septal aneurysm or large right-to-left shunt Study Type: multicenter, prospective, open-label, blinded endooint	myocardial infarction; uncontrolled diabetes mellitus; pulmonary hypertension; lacunar stroke Inclusion Criteria: 16 -60 y old; ischemic stroke within 6 months confirmed by cerebral imaging; mRS = 3; PFO with at least one of the following characteristics: large shunt 30 microbubbles associated atrial septal aneurysm (ASA) with base of aneurysm 15 mm and	Randomized Group 1: Transcatheter PFO closure plus long-term antiplatelet therapy (173), long-term oral anti-coagulants (180), or long-term antiplatelet therapy. (171) Group 2: Transcatheter PFO closure plus long-term antiplatelet therapy (65)	1° end point: fatal or nonfatal stroke PFO Closure (0/238) vs Antiplatelet Therapy (14/235) [data from groups 1 and 2 combined] HR, 0.03 (95% CI, 0-0.26); P<0.001 Oral Anticoagulants (3/187) vs Antiplatelet (7/174) [Data from groups 2 and 3 combined] HR, 0.44 (95% CI, 0.11-1.48)	2° end point: Disabling stroke PFO Closure (0/238) vs Antiplatelet Therapy (1/235) [data from groups 1 and 2 combined] HR, 0.33 (95% CI, 0 to 6.18); P=0.63 Oral Anticoagulants (1/187) vs Antiplatelet (1/174) [Data from groups 2 and 3	Trial stopped early after 663 of projected 900 patients	1% lost-to-follow-up No difference in disabling stroke Leaves open the question of superiority of PFO closure to anticoagulation Potential bias due to unblinded referral decisions for endpoint adjudication
	large right-to-left shunt Study Type: multicenter,	septal aneurysm (ASA) with base of aneurysm 15 mm and excursion > 10 mm. Exclusion criteria: another	Transcatheter PFO closure plus long-term	combined] HR, 0.44 (95% CI, 0.11-	(1/187) vs Antiplatelet (1/174)		referral decisions for endpoint
		identifiable cause of stroke on a thorough etiological work including >/= 30% arterial stenosis, other potentially	Group 3: long-term oral anti-coagulants (7), or long-term antiplatelet therapy (3)		The rate of new-onset atrial fibrillation or flutter was higher in the PFO closure		

		embolgenic heart disease, small deep infarction with diabetes, hypertension or at least one old small infarction or vascular leukoencephalo pathy; severe pulmonary artery hypertension.			group (4.6%) than in the antiplatelet-only group (0.9%)		
RESPECT Carroll JD, et al. ³⁰¹ 2013 23514286	Aim: to evaluate whether device PFO closure is superior to medical therapy alone in preventing recurrent ischemic stroke or early death Study type: multicenter, prospective, open-label, blinded endpoint adjudication, phase 3 RCT Size: N=980	Inclusion criteria: 18 -60 years of age; cryptogenic ischemic stroke, within 270 days; PFO demonstrated by TEE Exclusion criteria: mechanism for the index stroke other than paradoxical embolization such as large-vessel disease, any	Intervention: Catheter-based closure PFO plus antiplatelets for 6 months (n=499) Comparator: Medical therapy with oral antithrombotic agent (n=481)	1° end point composite of recurrent nonfatal ischemic stroke, fatal ischemic stroke, or early death after randomization 9 in the closure group and 16 in the medical-therapy group had a recurrence of stroke (HR, 0.49; 95% CI, 0.22-1.11; P = 0.08). Safety end point: • 22 procedure related serious adverse events in occurred in 21 /464 (4.5%) of patients in the closure group who underwent the procedure	• In time-to-event analyses of the intention-to-treat cohort, the primary endpoint occurred less frequently in the closure group than in the medical therapy group (HR, 0.17; 95% CI, 0.02 - 1.47; P=0.07).	5x more lost to follow-up than had stroke endpoints Lost-to follow-up Closure 9.6% (48/499) Medical only 18.7% (90/481) 24% of medical arm on anticoagulants¹	Failed to achieve primary endpoint. Large number lost to follow-up compared to number of stroke endpoint makes results unreliable Potential bias due to unblinded referral decisions for endpoint adjudication

RESPECT Long-Term Outcome Saver JL, et al. ³⁰² 2017 28902590	See Above Additonal follow-up for a median of 5.9 years	cardioembolic source, a lacunar infarct that was probably due to intrinsic small-vessel disease, or an arterial hypercoagulable state See above	See above	1° end point composite of recurrent nonfatal ischemic stroke, fatal ischemic stroke, or early death after randomization 18/3080 patient-years in the closure group and 28/2608 patient-years in the medical-therapy group had a recurrence of stroke (HR, 0.55; 95% CI, 0.31-0.999; <i>P</i> = 0.046). Safety endpoint: N/A	the rate of pulmonary embolism was 0.41 per 100 patient-years in the PFO closure group and 0.11 per 100 patient-years in the medical-therapy group (hazard ratio, 3.48; 95% CI, 0.98-12.34; P=0.04)	•5x more lost to follow-up/withdrew than had stroke endpoints Closure 15.4% (77/499) Medical only 31% (149/481)	Large number lost to follow-up compared to number of stroke endpoint makes results unreliable Potential bias due to unblinded referral decisions for endpoint adjudication
PC Trial Meier B, et al. ³⁰³ 2013 23514285	Aim: to determine whether the device closure of patent foramen ovale is superior to medical therapy in preventing recurrence of embolic events Study type: multicenter, prospective, open-label, blinded endpoint adjudication, phase 3 RCT	Inclusion criteria: Age < 60 y old; PFO documented by TEE; TIA, Ischemic stroke or peripheral embolism; Exclusion criteria: Any identifiable	Intervention: percutaneous, catheter-based closure of PFO plus antiplatelet s for 6 mo (n=204) Comparator: antithrombotic medical therapy at discretion of treating	1° end point: composite of death, nonfatal stroke, TIA, or peripheral embolism 7/204 (3.4%) in the closure group vs 11/210 (5.2%) in the medical therapy group (HR, 0.63; 95% CI, 0.24-1.62; P=0.34).	• Nonfatal stroke 1/204 (0.5%) in the Closure group vs 5 (2.4%) in the medical-therapy group (HR, 0.20; 95% CI, 0.02-1.72; P=0.14)	12x more lost to follow-up/withdrew than had stroke endpoints Lost-to follow-up Closure 15% (31/204) Medical only 20% (42/210)	Failed to achieve primary endpoint. Large number lost to follow-up/withdrew compared to number of stroke endpoint makes results unreliable

	Size: N=414	cause for the thromboembolic event other than PFO. Long list of causes that must be specifically excluded in all patients enrolled in this study includes atrial fibrillation, significant atherosclerosis or dissection of the aorta; significant atherosclerosis and/or dissection of the intra- and extracranial arteries, hematologic abnormalities. NOT specifically lacunar stroke	physician (n=211)	Safety end point: Minor procedural complications occurred in 3/196 patients who underwent the procedure		31% of medical arm on anticoagulants ¹	Potential bias due to unblinded referral decisions for endpoint adjudication
CLOSURE I Furlan A, et al. ³⁰⁴ 2012 <u>22417252</u>	Aim: to evaluate whether device PFO closure is superior to medical therapy alone Study type: multicenter, prospective, open-label, blinded endpoint adjudication, phase 3 RCT Size N=909	Inclusion criteria: 18 - 60 years of age; ischemic stroke or TIA within the previous 6 months not related to a previously	Intervention: catheter-based closure of PFO plus antiplatelet s for 2 years (n=447) Comparator: medical therapy with warfarin (INR 2-3) aspirin	1° end point: composite of stroke or transient ischemic attack during 2 years of follow-up, death from any cause during t the first 30 days, or death from neurologic causes between 31 days and 2 years.	• Stroke rates were (2.9%) and 3.1% (<i>P</i> =0.79)	0.6% (3/462) • 30% of medical arm on anticoagulants¹	 Failed to achieve primary endpoint. Minimal Lost-to follow-up Closure 1.7 % (8/447) Medical only 0.7% (3/462)

		documented PFO or other identifiable cause.; PFO by TEE Exclusion criteria: potential cause of ischemic stroke or TIA other than the PFO such as clinically significant carotid-artery stenosis, complex aorticarch atheroma, clinically significant left ventricular dysfunction or left ventricular aneurysm, or atrial fibrillation.	(325 mg daily), or both, at the discretion of the principal investigator at each site. (n=462)	Kaplan– Meier estimate of the 1° end point was 5.5% in the closure group vs 6.8% in the medical-therapy group (adjusted HR 0.78; 95% CI, 0.45 to 1.35; <i>P</i> = 0.37). Safety end point: Major vascular procedural complications occurred in 3.2%			Potential bias due to unblinded referral decisions for endpoint adjudication
Shariat A, et al. ⁴¹⁵ 2013 23914208	Aim: to compare rates of stroke or transient ischemic attack recurrence or death in patients with cryptogenic stroke and patent foramen ovale (PFO) who received medical treatment with aspirin or warfarin.	Inclusion Criteria: ≥18 years; within 30 days of enrollment transient ischemic attack or stroke which fulfilled the criteria for	Intervention: aspirin 80 mg orally 3 times daily (n=23) Comparator: warfarin (INR 2 to 3.) (n=21)	1° end point: recurrence of ischemic event (transient ischemic attack or stroke) or death due to any cause. Aspirin 3/23 (13%) Warfarin 6/21 (29%)	no statistically significant difference in the time to ischemic event recurrence (hazard ratio: 0.33; 95% CI: 0.06-1.7; $P = 0.183$)	Very small number Lost to follow-up Closure 8.3% (2/24) Medical only 8.7% (2/23)	• numbers too small to draw firm conclusions about warfarin vs aspirin in patients with cryptogenic stroke

Study Type: single-	undetermined	no statistically significant		
center, single-blind, non-	causes of stroke	difference in the time to		
placebo-controlled, two	according to the	primary endpoint (hazard		
parallel-group, prospective	Causative	ratio: 0.45; 95% CI, 0.1-		
RCT	classification of	1.8; <i>P</i> =0.259)		
1.61	stroke modified	1.0, 7 -0.200)		
Size: N=44	Trial of Org	Safety Endpoint:		
0126: 11-44	10172 in Acute			
	Stroke	Major bleeding (upper		
	Treatment	gastrointestinal		
		hemorrhage) occurred in		
	criteria (CCS-	4.3% (1/23) of the patients		
	TOAST)	in the aspirin group and in		
	classification;	9.5% (2/21) of those in the		
	PFO by TEE)	warfarin group (<i>P</i> =0.501).		
	and contrast-			
	transcranial			
	Doppler			
	sonography (c-			
	TCD)			
	examination.			
	Exclusion			
	Criteria:			
	(1) Evident			
	large-artery			
	atherosclerosis			
	defined as			
	>50% stenosis			
	or occlusion of a			
	major brain			
	artery or branch			
	cortical artery;			
	(2) unequivocal			
	cardiac source			
	of embolism			
	defined as			
	chronic or			
	paroxysmal			
	atrial fibrillation,			
	mitral stenosis,			

			I	T	1	1	
		mechanical					
		heart valve,					
		endocarditis,					
		intracardiac clot					
		or vegetation,					
		myocardial					
		infarction within					
		3 months,					
		dilated					
		cardiomyopathy,					
		and ejection					
		fraction less					
		than 30%; (3)					
		small-vessel					
		disease defined					
		as cortical,					
		cerebellar,					
		brainstem or					
		subcortical					
		infarct <1.5 cm;					
		(4) other					
		determined					
		cause of stroke;					
		without a					
		suitable					
		temporal					
		window for					
		performance of c-TCD; severe					
		aphasia; severe					
		disabling stroke					
		(mRS 4-5)					
DIGGG	A: T: :	dementia	1.4 4	40 1 14		0 1 00	4.00/ 1
PICSS	Aim: The primary null	Inclusion	Intervention:	1° end point: recurrent	Entire cohort	• Only 98	●1.6% lost-to-
Homma S, et	hypothesis was that the	Criteria: 30 -85	warfarin INR 1.4	ischemic stroke or death	with PFO	patients with	follow-up
al. ⁴¹⁶	presence or absence of a	years old;	to 2.8. (n=312)	at 2 years	n=203	crytpogenic	
2002	PFO did not affect the	ischemic stroke			No statistically	stroke and PFO	 numbers too
<u>12045168</u>	time to recurrent ischemic	within the	Comparator:	no statistically significant	significant		small to draw
	stroke or death from any	previous 30	aspirin	difference in the time to	difference in the	 No separate 	firm conclusions
	cause in patients treated			primary end points	time to primary	outcome data	about warfarin

with either warfarin or	days; >/=_3 on	325-mg daily,	between those with	end points	for recurrent	vs aspirin in
aspirin.	the Glasgow	(n=318)	(n=203) and those without	between those	stroke alone	patients with
aspirii.	Outcome Scale	(11–310)	(n=298) PFO in the overall	randomized to	Stroke alone	cryptogenic
Study type: Double-blind	Outcome Scale		population (<i>P</i> =0.84; HR,			stroke
				warfarin (n=97)		Stroke
RCT, substudy of a larger			0.96; 95% CI, 0.62-1.48;	and those		
trial			2-year event rates 14.8%	randomized to		
	Exclusion		versus 15.4%)	aspirin (n=106)		
Size N=630	Criteria:			(<i>P</i> =0.49; HR,		
	baseline INR		Safety end point:	1.29; 95% CI,		
	above the		major hemorrhage: 1.78	0.63 to 2.64; 2-		
	normal range		events/100 patient-years	year event rates		
	>1.4; stroke		on warfarin versus 1.91	16.5% versus		
	related to a		events/100	13.2%)		
	procedure or		patient-years on aspirin;			
	attributable		rate ratio 0.93, <i>P</i> =1.0.	 Cryptogenic 		
	to a			stroke subgroup		
	cardioembolic			with PFO		
	source, or			n=98		
	planned to			No statistically		
	undergo surgery			significant		
	for high-grade			difference in the		
	carotid stenosis;			time to primary		
	contraindication			end points		
	to TEE			between those		
				randomized to		
				warfarin (n=42)		
				and those		
				randomized to		
				aspirin (n=56)		
				(<i>P</i> =0.28; HR,		
				0.52; 95% CI,		
				0.16-1.67; 2-		
				,		
				year event rates		
				9.5% versus		
	1			17.5%)		

Table LXXI. Nonrandomized Trials, Observational Studies, and/or Registries of Cholesterol Guidelines

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
2016 ESC/EAS Guidelines for the Management of Dyslipidaemias Catapano AL, et al. ³⁰⁵ 2016 27567407	Study type: Expert guidelines Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° end point: N/A Results: N/A	Intensive statin therapy is recommended in patients with a history of non-cardioembolic ischemic stroke or TIA for secondary prevention of stroke
2013 ACC/AHA Guidelines on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Risk in Adults Stone NJ, et al. ⁷ 2014 24222016	Study type: Expert guidelines Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° end point: N/A Results: N/A	On the basis of this large and consistent body of evidence, 4 major statin benefit groups were identified for whom the ASCVD risk reduction clearly outweighs the risk of adverse events based on a strong body of evidence; these include secondary prevention in individuals with clinical ASCVD (clinical ASCVD includes stroke presumed to be of atherosclerotic origin) No data were identified for treatment or titration to a specific LDL-C goal in adults with clinical ASCVD The majority of studies confirming the efficacy of cholesterol reduction in improving clinical outcomes in patients with clinical ASCVD used a single fixed dose statin to lower LDL-C levels
NICE Guideline: Cardiovascular disease: risk assessment	Study type: Expert guidelines Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° end point: N/A Results: N/A	Start statin treatment in people with CVD with atorvastatin 80 mg; use a lower dose of atorvastatin if any of the following apply:

and reduction, including lipid modification ³⁰⁶ 2014 Link to article				potential drug interactions, high risk of adverse effects, patient preference
Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult Anderson TJ, et al. ³⁰⁷ 2013 23351925	Study type: Expert guidelines Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° end point: N/A Results: N/A	Individuals are considered to be at high risk of major ischemic cardiovascular events and thus the principle beneficiaries of statin therapy if they have cerebrovascular disease including transient ischemic attack We recommend a target LDL-C <2.0 mmol/L or >50% reduction of LDL-C

Abbreviations: ASCVD indicates atherosclerotic cardiovascular disease; CVD, cardiovascular disease; CI, confidence interval; HR, hazard ratio; LDL-C, low-density lipoprotein cholesterol; N/A, not available; TIA, transient ischemic attack.

Literature search topic: Guidelines for Treatment of Blood Cholesterol for Secondary Stroke Prevention

Table LXXII. Randomized Clinical Trials of Evolocumab

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
FOURIER Sabatine MS, et al. ³⁰⁸ 2017 28304224	Aim: Test the clinical efficacy and safety of evolocumab when added to high-intensity or moderate-intensity statin therapy in patients with clinically evident	Inclusion criteria: 40–85 y old, clinically evident atherosclerotic cardiovascular disease plus	Intervention: Subcutaneous injections of evolocumab (either 140 mg every 2 wk or	1° end point: Composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization at mean follow-up of 2.2 y	2° end point: composite of cardiovascular death, myocardial infarction, or stroke:	Small ARR for key secondary clinical end point): 1.5%/2 y NNT: 74/2 y	High cost, small benefit Routine use problematic

atherosclerotic	additional	420 mg every		• I:5.9%	• Cost:	
cardiovascular disease	characteristics	mo) (n=13,784)	Overall	C:7.4%	approximately	
cardiovasculai discasc	that placed them	1110) (11–13,704)	1: 9.8%	HR, 0.80 (95%	\$14,000/y per	
Study type: Randomized,	at higher	Comparator:	C: 11.3%	CI, 0.73–0.88);	patient	
double-blind, placebo-	cardiovascular	Placebo	HR, 0.85 (95% CI, 0.79–	P<0.001		
controlled, multinational	risk; fasting LDL	(n=13,780)	0.92); <i>P</i> <0.001		Approximately Approximately	
clinical trial	cholesterol level	(11-13,700)	0.92), F<0.001	Subgroup with	\$2.1 million to	
Cillical tilal	of ≥70 mg/dl		Subgroup with Stroke	stroke alone	prevent one	
Size: N=27,564	(1.8 mmol/l) or a		alone (n=3366)	(n=3366):	event	
312e. N-21,304	non-HDL		1: 6.0%	1: 5.0%	(cardiovascular	
	cholesterol level		C: 8.5%	C: 6.5%	death,	
	of ≥100 mg/dl		HR, 0.70 (95% CI, 0.54 to	HR, 0.77 (95%	myocardial	
	(2.6 mmol/l)		0.90)	CI, 0.58–1.02)	infarction or	
	while they were		0.30)		stroke) over a	
	taking an		Safety end point: No		period of 2 y	
	optimized		significant between-group			
	regimen of lipid-		differences were seen in			
	lowering therapy		the overall rates of			
	(preferably a		adverse events, serious			
	high-intensity		adverse events, or			
	statin but at		adverse events thought to			
	least		be related to the study			
	atorvastatin 20		agent and leading to			
	mg daily or its		discontinuation of the			
	equivalent)		study regimen			
	equivalent)		Study regimen			
	Exclusion					
	criteria: NYHA					
	class III or IV, or					
	left ventricular					
	ejection fraction					
	< 30%,					
	hemorrhagic					
	stroke,					
	uncontrolled or					
	recurrent					
	ventricular					
	tachycardia,					
	planned or					
	expected					
1	Lovboolog	I		I		

cardiac surgery			
or			
revascularizatio			
n within 3 mo,			
uncontrolled			
hypertension,			
and many others			

Abbreviations: ARR indicates absolute risk reduction, CI, confidence interval; HDL, high-density lipoprotein; HR, hazard ratio; LDL, low-density lipoprotein; NNT, number needed to treat; NYHA, New York Heart Association; and y, years.

Literature search topic: Evolocumab and secondary stroke prevention

Table LXXIII. Randomized Clinical Trials Comparing Continuous Positive Airway Pressure Versus Control

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Primary End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SAVE McEvoy RD, et al. ³¹⁶ 2016 27571048	Aim: To assess whether treatment with CPAP prevents major CV events Study type: Secondary prevention, international, multicenter, randomized, parallelgroup, open-label, blinded end point assessment Size: N=2717 eligible adults 2/3 Asians 1/3 Caucasians 78% had history of hypertension	Inclusion criteria: Age 45–75 y with moderate to severe OSA and coronary or cerebrovascular disease	Intervention: CPAP (N=1359) Comparator: Usual care (N=1358)	1° end point: Primary composite end point: death from CV causes, MI, stroke, or hospitalization for unstable angina, heart failure, or TIA: CPAP grou <i>P</i> =279 (17%) vs. usual care grou <i>P</i> =207 (15.4%) (<i>P</i> =0.34) Safety end point: N/A	• Stroke: CPAP group=67 (5.0%) vs. usual care group=68 (5.1%), P=0.84 • Hospitalization for TIA: CPAP group=16 (1.2%) vs. usual care group=9 (0.7%), P=0.18 • Composite of cerebral events CPAP group=80 (50.9%) vs. usual care group=74 (5.5%), P=0.72 • Other outcomes: health-related	For several of the participating countries, the diagnosis and treatment of sleep apnea were not well established in clinical practice when the trial began	● No benefit in treating OSA in the hospital in those patients with both CV disease and moderate to severe OSA ● Therapy with CPAP plus usual care, as compared with usual care alone, did not have significant effects (HR with CPAP, 1.10; 95% CI: 0.91–1.32; P=0.34) on the prevention of recurrent serious CV

ischemic stroke patients followed for 2 y Study type: Prospective, randomized, controlled, multicenter study Size: N=126 Size: N=126 S	Parra O, et al. ³¹⁵ 2011	Aim: To assess the impact of nCPAP in	Inclusion criteria: First	Intervention: nCPAP (n=57)	1° end point: Percent of patients with improvement	quality of life, snoring symptoms, daytime sleepiness, mood • mRS at 1 mo: nCPAP	Small sample	events in patients with moderate to severe OSA and established CV disease • Early use of nCPAP in first
		ischemic stroke patients followed for 2 y Study type: Prospective, randomized, controlled, multicenter study	ever ischemic stroke patients (<75 y) with an apnea-hypopnea index ≥20 events/h Exclusion criteria: Patients with impaired consciousness and patients previously diagnosed and	started at a mean ± SD of 4.6± 2.8 d after stroke onset Comparator:	in neurological assessment: significantly higher in the small nCPAP group 1 mo after stroke than in controls: Rankin scale 90.9 vs. 56.3 (<i>P</i> <0.01); Canadian scale 88.2 vs. 72.7 (<i>P</i> <0.05)	group=90.9 vs. control group=56.3 (OR, 7.8; P<0.01) No significant differences observed in the Barthel Index between the 2 groups (nCPAP group=75.9±27.9 vs. control group=73.6±27.0) CV event rate (cardiac ischemia, stroke recurrence, CV death): nCPAP group=12.3% vs. control group=11.6% (P=0.560) Mean time from stroke onset until appearance of first CV event: nCPAP group		ever ischemic stroke patients followed for 24 mo seems to accelerate neurological recovery and delay the appearance of CV events

		group=7.9 mo (P=0.044) • CV mortality rate: nCPAP group=0 vs. control
		group=4.3% (P=0.161) • CV event-free survival rate
		after 24 mo: nCPAP group=87.7% vs. control group
		=88.4% (<i>P</i> =0.911)

Abbreviations: CPAP indicates continuous positive airway pressure; CV, cardiovascular; h, hour; HR, hazard ratio; MI, myocardial infarction; mRS, modified Rankin Scale; N/A, not available; nCPAP, nasal continuous positive airway pressure; OR, odds ratio; OSA, obstructive sleep apnea; SD, standard deviation; SF-36, 36-Item Short Form Survey; TIA, transient ischemic attack; and y, year.

Literature search topic: Routine screening of patients with recent ischemic stroke for obstructive sleep apnea

Table LXXIV. Randomized Clinical Trials of Recurrent Stroke on Aspirin

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SPS3 trial subgroup analysis Cote R, et al. ³¹⁷ 2014 24384643	Aim: Assess whether adding clopidogrel to ASA is more effective than ASA + placebo in patients suffering lacunar stroke while taking ASA. Study type: Post-hoc analysis of RCT Size: N=838	Inclusion criteria: • ≥ 30 yrs • recent lacunar stroke ≤ 180 d • On ASA at time of qualifying event	Intervention: ASA + clopidogrel (n=427) Comparator: ASA + placebo (n=411)	1° end point: Recurrent stroke (ischemic stroke or intracranial hemorrhage) Placebo vs. Clopidogrel: 3.3% vs 3.1%; HR, 0.91 (0.61-1.37); P=0.66 Safety end point (if relevant):	Acute MI Death (vascular, nonvascular, unknown cause)	Post-hoc analysis Underpowered for patients with recurrent stroke on aspirin Limited generalizability to non-small	Adding clopidogrel to ASA for secondary stroke prevention in patients with recent small vessel ischemic stroke does not reduce the risk

Exclusion	Major extracranial	vessel ischemic	of recurrent
criteria:	hemorrhage (0.83% vs	stroke subtypes	stroke, and
Ipsilateral	1.63%; HR, 1.96 (1.0–	 Results are 	increases risk
carotid artery	3.8); <i>P</i> =0.05	not	for major
disease		generalizable to	extracranial
(surgically		initiation of	hemorrhage.
amenable)		alternative antiplatelet	
Major		therapy in the	
cardioembolic		early post-stroke	
sources of		period.	
embolus			
Pts taking			
other antiplatelet			
drugs other than			
ASA at time of			
qualifying event			

Abbreviations: ASA indicates Aspirin; CI, confidence interval; HR, hazard ratio; MI, myocardial infarction; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; RR, relative risk; and TIA, transient ischemic attack.

Literature Search Topic: ASA Failure

Table LXXV. Nonrandomized Studies of Recurrent Stroke on Aspirin

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Kim JT, et al. ⁴¹⁷ 2016 <u>26604247</u>	Study type: Observational registry (multicenter, South Korea) Size: N=1172	Inclusion criteria: Noncardioembolic ischemic stroke within 48 hrs symptom onset ASA within 7 d of event Exclusion criteria:	1° end point: Composite of stroke, MI, or vascular death at 1 year (comparing patients maintained on ASA (MA) vs switching to alternative antiplatelet agent (SA) vs addition of alternative antiplatelet agent to ASA (AA) Results: 14.5% (MA) vs 7.4% (SA) vs 6.7% (AA) (P<0.001)	 In this stroke registry, switching to or adding alternative antiplatelet agents was associated with a reduction in composite of stroke, MI, or vascular death at 1 year compared to continuing on ASA alone Registry data analysis subject to selection bias and unmeasured confounds

		Anticoagulant treatment No antithrombotic at discharge		Generalizability limited in non-Asian populations Antiplatelet dosages, duration, and adherence were not strictly monitored Lack of effect on stroke events alone limited by small number of stroke events
Lee M, et al. ⁴¹⁸ 2014 25468508	Study type: Retrospective analysis of national Taiwanese cohort Size: N=1884	Inclusion criteria: Patients receiving ASA before index ischemic stroke Patients maintained on ASA or switched to clopidogrel following index stroke Exclusion criteria: H/o afib, valvular heart disease, or coagulopathy Switching antiplatelet therapy during f/u period	1° endpoint: Hospitalization due to a new-onset major adverse cardiovascular event (MACE - composite of any stroke or MI) Results: Clopidogrel vs ASA (MACE): HR, 0.54; CI, 0.43-0.68; P<0.001	Compared to maintaining on ASA following an ischemic stroke, switching to clopidogrel associated with lower occurrence of stroke or MI Retrospective analysis subject to selection bias and unmeasured confounds Generalizability limited in non-Asian populations Differences in vascular risk factors between groups may have confounded results
Lee M, et al. ³¹⁸ 2017 <u>28701574</u>	Study type: Systematic review, Meta-analysis Size: N=8723 (3 RCTs, 2 multicenter or national registries)	Inclusion criteria: Pubmed search 1966 – 2016 using terms "aspirin failure" AND "ischemic stroke or cerebral ischemia or transient ischemic attack" Clinical trials and cohort studies of consecutive pts taking ASA before	1° endpoint: Major adverse cardiovascular event (MACE) Secondary outcome: Recurrent stroke Results: Switching or addition of alternative antiplatelet agent compared to continuing ASA: HR, 0.68 (0.54-0.85); P=0.0008	Compared to maintaining on ASA following an ischemic stroke, switching to clopidogrel associated with lower occurrence of MACE or recurrent stroke Significant heterogeneity in the five included studies Results likely driven by registries, with likely unmeasured confounds, bias, and limited generalizability to non-Asian populations

	ndex ischemic stroke or TIA comparison to exitch or additional of elternative entiplatelet agent or Reporting equantitative
	estimates of HR and 195% CI for major reducerse reardiovascular revents (MACE) or recurrent stroke
E	exclusion criteria: ◆ N/A

Abbreviations: ASA indicates Aspirin; CI, confidence interval; HR, hazard ratio; MI, myocardial infarction; N/A, not available; OR, odds ratio; RR, relative risk; and TIA, transient ischemic attack.

Literature Search Topic: ASA Failure

Table LXXVI. Subgroup Analyses of Randomized Clinical Trials of Antiplatelet Versus Anticoagulation in Patients with Non-cardioembolic

Acute Ischemic Stroke Taking Antiplatelets at Time of Qualifying Event

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Anticoagulation John S and Katzan I ³²⁰ 2015 25907917	Study type: Subgroup analysis of RCT of aspirin vs. warfarin in AIS Size: N=181 (n=88 ASA, n=93 warfarin)	Inclusion criteria: • 30-85 y old • No contraindications for warfarin or antiplatelets • AIS within the previous 30 d Exclusion criteria: • Abnormal INR (>1.4)	1° end point: Death from any cause or recurrent ischemic stroke up to 2 y Results: ASA 31.8% vs. warfarin 29% (RR, 0.9; 95% CI, 0.5–1.5; <i>P</i> =0.63)	 No difference in recurrence of stroke or death between those randomized to remain on aspirin vs. switching to warfarin Underpowered for subgroup analyses

	 Stroke attributed to a procedure, high- grade carotid stenosis, or an inferred cardioembolic source (e.g., atrial fibrillation) Inability to provide written consent 		
wasid subgroup analysis analysis Turan TN, et al.278 2009 19095991 Size: N=260 (n=12 ASA vs. n=134 warfarin)	symptomatic intracranial stenosis (50%–99%) taking ASA at time of	1º end point: Ischemic stroke, ICH, or death from vascular cause at 90 d Results: Primary end point: 29 (23%) vs. 24 (18%) HR (aspirin/warfarin), 1.32 (0.77–2.28); P=0.31 Major hemorrhage: 5.6% vs. 7.7%, HR (aspirin/warfarin), 0.81 (95% CI, 0.33–1.98); P=0.64	No difference in primary end point of ischemic stroke, ICH, or death from vascular cause at 90 d in patients taking aspirin at time of qualifying event and subsequently randomized to warfarin WASID not powered for subgroup analyses

wasid subgroup analysis Kasner SE, et al. ³²¹ 2006 17030766	Study type: Subgroup analysis of RCT of antiplatelet vs. warfarin in secondary stroke prevention Size: N=299 (n=143 antiplatelet, n=156 warfarin)	Inclusion criteria: AIS patients with symptomatic intracranial stenosis (50%–99%) taking antiplatelet therapy at time of qualifying event Exclusion criteria: • Tandem 50%–99% stenosis of the extracranial carotid artery • Nonatherosclerotic stenosis of an intracranial artery • Cardiac source of embolism (e.g., atrial fibrillation) • Contraindication to aspirin or warfarin therapy • Indication for heparin administration after randomization • Coexisting condition that limited survival to less than 5	1° end point: Ischemic stroke, ICH, or death from vascular cause at 90 d Results: • No difference in primary end point between antiplatelet and warfarin: 35 (24%) vs. 29 (19%) <i>P</i> =0.19	No difference in primary end point of ischemic stroke, ICH, or death from vascular cause at 90 d in patients taking antiplatelet therapy at time of qualifying event and subsequently randomized to warfarin WASID not powered for subgroup analyses
		у	disposid. Cl. confidence interval: LID becard until LCU introcessor	

Abbreviations: AIS indicates acute ischemic stroke; ASA, acetylsalicylic acid; CI, confidence interval; HR, hazard ratio; ICH, intracerebral hemorrhage; INR, international normalized ratio; RCT, randomized clinical trial; and RR, relative risk.

Literature search topic: Anticoagulation

Table LXXVII. Nonrandomized Studies of Early Secondary Prevention in Patients with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments					
Anticoagulation									
Gioia LC, et al. ²⁰⁷ 2016 27222524	Study type: Prospective open- label Size: N=60	Inclusion criteria: Patients with AF treated with rivaroxaban ≤14 d of TIA or ischemic stroke (NIHSS <9) Exclusion criteria: GFR <30 ml/min, contraindication to MRI	1° end point: Symptomatic HT at day 7 (defined as PH2 with ≥4-point increase in NIHSS score) Results: No patients developed symptomatic HT	Rivaroxaban may be safe for initiation ≤14 d of TIA or minor to moderate severity ischemic stroke in patients with AF Study limited by small sample size and observational design					
VISTA analysis Abdul-Rahim AH, et al. ⁴¹⁹ 2015 25319957	Study type: Retrospective cohort Size: N=644 (individual patient data from neuroprotection trials in AIS)	Inclusion criteria: AIS with known h/o AF or on baseline ECG; patients randomized to placebo or any drug with no known action on stroke outcome Exclusion criteria: Lacking data on relevant baseline and outcomes data	1° end point: Ordinal shift mRS at 90 d; recurrent stroke or sICH at 90 d (defined by ≥4-point increase on NIHSS Results: Combined antithrombotic therapy (AC + AP) associated with more favorable ordinal mRS (OR, 1.79; 95% CI, 1.32–2.42) Anticoagulation associated with fewer RS and sICH at 90 d compared to no antithrombotic therapy	Initiation of anticoagulation therapy 2–3 d post-stroke associated with fewer events of recurrent stroke with no appreciable increase in rates of sICH; Limitations: nonrandom selection of antithrombotic therapy subject to selection bias - patients in "no antithrombotic group" had higher baseline NIHSS and greater comorbidities; NOACs were not prescribed at the time of these data					
RAF Study Paciaroni M, et al. ²⁰² 2015 26130094	Study type: Prospective cohort Size: N=1029 (multicenter Europe and Asia)	Inclusion criteria: Known or newly diagnosed AF Exclusion criteria: Contraindication to AC	1° end point: Composite stroke, TIA, systemic embolism, sICH, major extracranial bleeding within 90 d Results: 12.6% primary outcome HR, 0.53 (0.30–0.93) starting AC 4–14 d vs. <4 d	Initiating AC 4–14 d from stroke onset in patients with AF had better outcomes; high CHA ₂ DS ₂ -VASc, NIHSS, large ischemic lesions, and type of AC associated with composite outcome Study limited by non-randomization					

	after Hemorrhagic Tra		An and a state No. of a state to the state of a second sec	0
Kim JT, et al. ³²² 2014 <u>24587041</u>	Study type: Retrospective analysis Size: N=222	Inclusion criteria: Patients with AIS and hemorrhagic transformation Exclusion criteria: Early death or lost to f/u Malignant infarction 2/3 Bleeding disorders H/o recent hemorrhage Brain surgery	1° end point: Neurological deterioration, vascular events, and death at 1 mo Results: Antithrombotics vs. no antithrombotics (1.6% vs 11.1%, <i>P</i> =0.041)	 Suggests patients with AIS and hemorrhagic transformation do better with early reinitiation of antithrombotics than not Study limited by single-center, retrospective analysis
TAIST England TJ, et al. ³²³ 2010 21030711	Study type: Post- hoc analysis from RCT Size: N=1297	Inclusion criteria: Patients within 48 h of AIS, treated with medium and high dose tinzaparin (LMWH) vs. ASA Exclusion criteria: Presence of hemorrhagic transformation on prerandomization head CT	1° end point: Hemorrhagic transformation at 10 d and functional outcomes at 3 and 6 mo (mRS, BI) Results: No difference in hemorrhagic transformation on LMWH or functional outcomes in patients with HT	LMWH is safe to administer in the acute stroke setting Patients with sICH were excluded; post-hoc analysis subject to subject bias
Endovascular Th	nerapy in CeAD			
CADISS subgroup Larsson SC et al. ³²⁵ 2017 28087823	Study type: Retrospective analysis of CeAD patients with and without DA Size: N=264	Inclusion criteria: CeAD patients within 7 d of symptom onset Exclusion criteria Intracranial artery dissection	1° end point: Difference in recurrent stroke at 12 mo between CeAD patients with DA and without DA Results: DA vs. no DA: OR, 0.84 (95% CI, 0.10–7.31; P=0.88)	 Dissecting aneurysms have a benign natural history and endovascular therapy is not necessary in the majority of cases Corroborated by accompanying systematic review Study limited by possible selection and survival bias

		Contraindications to antithrombotic therapy Baseline antithrombotic therapy Pregnancy		
Jensen J, et al. ⁴²⁰ 2016 <u>27286992</u>	Study type: Retrospective analysis Size: N=161	Inclusion criteria: CeAD patients managed with EVT (n=24) vs. no EVT Exclusion criteria: None listed	1° end point: No difference in 90-days mRS ≤2, adjusted OR, 0.62 (0.12–3.14; <i>P</i> =0.56) Results: Adjusted OR, 0.62 (95% CI, 0.12–3.14; <i>P</i> =0.56)	Retrospective analysis prone to selection bias. With medical therapy alone, the overall prognosis and natural history of CeAD, including dissecting aneurysms, is favorable 324,325
Ahlhelm F, et al. ³²⁶ 2013 25187774	Study type: Retrospective case series Size: N=10	Inclusion criteria: CeAD patients managed with stenting due to 1) iatrogenic dissection or 2) recurrent ischemic events despite optimal antithrombotic treatment Exclusion criteria: N/A	1° end point: Technical success (8/10), complications (3/10), recurrent ischemic events Results: No recurrent ischemic events at mean f/u 47 mo	Stenting is feasible for CeAD in patients with recurrent ischemic events despite optimal medical therapy but is rarely indicated Limited by small sample size and selection bias

Abbreviations: AC indicates anticoagulant; AF, atrial fibrillation; AIS, acute ischemic stroke; AP, antiplatelet; CI, confidence interval; BI, Barthel Index; CeAD, cervical artery dissection; DA, dissecting aneurysm; ECG, electrocardiogram; EVT, endovascular therapy; f/u, follow-up; GFR, glomerular filtration rate; h, hour; h/o, history of; HR, hazard ratio; HT, hemorrhagic transformation; IV, intravenous; LMWH, low-molecular-weight heparin; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NOAC, new oral anticoagulant; OR, odds ratio; PH2, parenchymal hematoma type 2; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; RR, relative risk; RS, recurrent stroke; and TIA, transient ischemic attack.

Literature search topics: Antiplatelet AND Anticoagulation

Table LXXVIII. Randomized Clinical Trials of Early Antiplatelet Versus Anticoagulation in Cervical Artery Dissection

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
CADISS CADISS Trial Investigators ³²⁴ 2015 25684164	Aim: To estimate effectiveness and rate of recurrent stroke with AC vs. antiplatelet therapy in patients with CeAD Study Type: Phase II feasibility, randomized, open-label trial Size: N=250 (46 centers, UK and Australia)	Inclusion criteria: Patients with extracranial carotid or vertebral artery dissection, onset of symptoms (cerebral ischemia or local symptoms) within the past 7 d, and imaging evidence of definite or probable dissection Exclusion criteria: Intracranial dissection, contraindication or alternative indication for antiplatelet or anticoagulation	AC (n=124) vs. antiplatelet (n=126) at discretion of local physician	1° end points: Ipsilateral stroke or death (any cause) within 3 mo of randomization: antiplatelet 3 (2%) vs. AC 1 (1%); OR, 0.335 (95% CI, 0.006–4.233); P=0.63 Safety end point: Major bleeding: antiplatelet 0 vs. AC 1 (1%)	Composite outcomes of any stroke, death, or TIA; other adverse events No clinical meaningful differences between groups	Phase II feasibility trial Mean time to randomization 3.65 d Acute ischemic stroke presentation in 78% cases Event rate would require ~10,000 patients to see a difference 20% cases in ITT analysis not confirmed by central imaging review	Suggests that either antiplatelet therapy or AC may be a reasonable option for early secondary stroke prevention in CeAD, and that the natural history after the initial event is generally favorable regardless of treatment allocation

Abbreviations: AC indicates anticoagulant; CeAD, cervical artery dissection; CI, confidence interval; ITT, intention-to-treat; OR, odds ratio; and TIA, transient ischemic stroke. Literature search topics: Anticoagulation AND Antiplatelet

Table LXXIX. Randomized Clinical Trials Regarding Early Initiation of Statins in Patients Hospitalized with Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (#	End Point Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° End Point (if any	Study Limitations; Adverse Events	Summary Conclusions Comments
ASSORT Yoshimura S, et al. ³³⁰ 2017 29030478	Study type: Prospective, Multicenter, open-label, blinded endpoint determination, RCT Study design: Patients randomly received early (within 24h after admission) or delayed (day 7 after admission) administration of atorvastatin 20 mg/d, pitavastatin 4 mg/d, or rosuvastatin 5 mg/d Size: N=256	Inclusion criteria: Patients who had diagnosed dyslipidemia before or LDL-C ≥100 mg/dl and hospitalized within 24h after the onset of cerebral infarction Exclusion criteria: Patients diagnosed as transient ischemic attack or cardio- embolic stroke, NIHSS >/= 20	patients) Intervention: Early (within 24h after admission) atorvastatin 20 mg/d, pitavastatin 4 mg/d, or rosuvastatin 5 mg/d (n=131) Comparator: Delayed (7th d after admission) atorvastatin 20 mg/d, pitavastatin 4 mg/d, or rosuvastatin 5 mg/d (n=125)	1° end point: mRS shift analysis at 90 d Adjusted OR 0.84; 95% CI, 0.53-1.3 Safety end point: Death until 90 d after randomization 2 vs 1	mRS 0-1 at 90 d 53.5% vs 46.8%; OR 1.59; 95% CI, 0.90-2.85	Statin dose used was of moderate intensity	RCT involving patients with acute ischemic stroke and dyslipidemia did not show superiority of early statin therapy within 24 hours of admission compared with delayed statin therapy 7 days after admission to alleviate the degree of disability at 90 days after onset.
FASTER Kennedy J, et al. ³²⁹ 2007 17931979	Aim: To assess whether simvastatin, if started within 24 h of symptom onset and continued for 90 d, would reduce the risk of stroke after TIA or minor stroke Study type: RCT Size: N=392	Inclusion criteria: Patients with TIA or minor acute ischemic stroke (NIHSS <4 at the time of randomization) Exclusion criteria:	Intervention: Simvastatin 40 mg (n=199) Comparator: Placebo (n=194)	1° end point: 10.6% patients in the simvastatin group had a recurrent vs. 7.3% for those in the placebo group (RR, 1.3; 95% CI, 0.7–2.4; <i>P</i> =0.64) Safety end point: Simvastatin-specific safety outcomes were not	 Any stroke, myocardial infarction, and vascular death Any stroke, TIA, acute coronary syndrome, or all-cause death 	Due to slow enrollment rate (increased widespread use of statins), trial was terminated early	 Substantially underpowered due to early termination Statin dose used was of moderate intensity

Patients for whom thrombolysis or other acute intervention was indicated as the current standard	different between the two groups: 15 (7.5%) in the active simvastatin group and 19 (9.8%) outcomes in the placebo groups (<i>P</i> =0.42)	
of care		

Abbreviations: Cl indicates confidence interval; h, hour; NIHSS, National Institutes of Health Stroke Scale; LDL-C, low-density lipoprotein cholesterol; mRS, modified Rankin Scale; RCT, randomized clinical trial; RR, relative risk; TIA, transient ischemic attack; and y, year.

Literature search topic: Statins

Table LXXX. Nonrandomized Studies Regarding Early Initiation of Statins in Patients Hospitalized with Acute Atherosclerotic Events

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% CI)	Summary Conclusions Comments
Hong KS and Lee JS ³²⁸ 2015 <u>26437994</u>	Study type: Meta- analysis Size: In-hospital statin effect (11 studies); statin withdrawal effect (4 studies)	Inclusion criteria: Using search terms of acute stroke and statin, 2,510 abstracts published until 31 December 2014 (including Epub ahead of print) were identified from PubMed search and reviewed Exclusion criteria: Meta-analysis articles	Primary End Point: Functional status (mRS 0–2 outcome most commonly used) Results: • Pooling 8 studies (n=37,153 subjects), showed that inhospital statin use was associated with good functional outcome (OR, 1.31; 95% CI, 1.12–1.53; P=0.001) • There was a significant and modest heterogeneity across the studies (P=0.005, I²=65%), but treatment effect was generally in the same direction; no significant publication bias (P=0.322) • Pooling 3 studies (20,681 subjects) with adjusted ORs with 95% CI, showed that in-hospital statin use was associated with lower mortality (OR, 0.41; 95% CI, 0.29–0.58; P<0.001); a non-significant and modest heterogeneity across the studies was noted across the studies (P=0.12, I²=53%) • Pooling three studies (14,002 subjects) with adjusted HRs, showed that in-hospital statin use showed a pattern but was not significantly associated with lower mortality (HR, 0.62; 95% CI, 0.33–1.16; P=0.138); a significant and substantial heterogeneity across the studies was found (P=0.002, I²=84%)	Starting statin treatment promptly after an acute ischemic stroke might reduce functional disability and short-term mortality, whereas statin withdrawal during this period might lead to worse outcome It is conceivable that preventing symptomatic recurrent vascular events might contribute to the statin effects on short-term functional status and mortality Meta-analyses were primarily based on data from observational studies, so bias cannot be excluded For several end points, there was a large amount of heterogeneity across studies, although this was typically driven by the magnitude of effect vs. direction of effect

			Pooling 3 studies (13,583 subjects) showed that statin withdrawal was associated with poor functional outcome (OR, 1.83; 95% CI, 1.01–3.30; P=0.045); a significant and modest heterogeneity across the studies was noted (P=0.07, I²=63%)	
Sanossian N, et al. ³²⁷ 2006 16908732	Study type: Retrospective analysis of prospectively collected data Size: N=92	Inclusion criteria: Patient had one of the following indications for statin initiation: (1) acute cerebral ischemic event mechanism attributed to largevessel atherosclerosis or intracranial branch atherosclerosis or lipohyalinosis (smallvessel disease); or (2) acute cerebral ischemia due to a nonatherosclerotic mechanism (e.g., cardioembolism, dissection, hypercoagulability), but presence of a history of coronary artery disease or of a modified National Cholesterol Education Program coronary artery disease risk equivalent Exclusion criteria: Patient was not receiving a statin at	1º end point: Adherence to statin treatment and achievement of national guideline target cholesterol goals were assessed 3 mo after discharge Results: Hospital initiation of statin therapy yielded high rates of adherence (93% [86/92]), lowered mean LDL-C levels from 120–78 mg/dL (3.1–2.0 mmol/L; P<0.001), and increased the proportion of patients with LDL-C levels >100 mg/dL (2.6 mmol/L) from 36% to 88% (P<0.001) at 3 mo	In-hospital initiation of statins after an acute ischemic stroke may improve medication persistence and target biomarker goal achievement in the post-stroke community setting Study limited by lack of a control group, but results consistent with assessment of statins in cardiac patients showing that in-hospital prescription patterns are a predictor of longer-term drug persistence in the community

		time of hospital admission		
Aronow HD, et al. 421 2003 14638557	Study type: Retrospective analysis of prospectively collected data Size: N=477	Inclusion criteria: Patients who underwent percutaneous coronary intervention for stable or recently unstable coronary disease, were >21 y, were not taking lipid-lowering therapy at the time of admission, and survived to hospital discharge Exclusion criteria: Patients who were taking lipid-lowering therapy at the time of admission or who died during their index hospitalization	Primary end point: Use of lipid-lowering therapy at 30 d and 6 mo Results: In multivariable analysis, initiation of a lipid-lowering agent during hospitalization was the strongest independent predictor of use at 6 mo, relative risk: 2.50 (95% CI, 2.29–2.65; <i>P</i> <0.001)	Initiation of lipid-lowering agents before discharge was the most important independent predictor of their use at follow-up

Abbreviations: CI indicates confidence interval; HR, hazard ratio; LDL-C, low-density lipoprotein cholesterol; mRS, modified Rankin Scale; OR, odds ratio; and y, years. Literature search topic: Statins

Table LXXXI. Randomized Studies Regarding Early Initiation of Smoking Cessation in Patients with Acute Atherosclerotic Events Who

Actively Smoke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Study Limitations; Adverse Events	Summary Conclusions Comments
EVITA Eisenberg MJ, et al. ³³⁴ 2016 26553744	Aim: To assess whether varenicline, begun in-hospital, is efficacious for smoking cessation following an ACS Study type: Multi-center, double-blind, randomized, placebo-controlled Study design: Subjects randomized study drugs (begun in-hospital) for 12 wk; all patients received lowintensity counseling Size: N=302	Inclusion criteria: Smokers hospitalized with an ACS Exclusion criteria: Unlikely to be available for follow-up Pregnant or lactating Cardiogenic shock or renal impairment at the time of randomization Hepatic impairment Excessive alcohol use Current use of marijuana or noncigarette tobacco products Currently using over-the-counter stimulants or anorectics Previously used varenicline	Intervention: Varenicline (0.5 mg once/d × 3 d, followed by 0.5 mg twice/d × 4 d, followed by 1.0 mg twice/d for the remainder of the 12-week treatment period) Comparator: Placebo	 Point-prevalence abstinence rates were 47.3% in the varenicline group vs. 32.5% in the placebo group (P=0.012; NNT=6.8) Continuous abstinence rates were 35.8% and 25.8%, respectively (P=0.081; NNT=10.0) Rates of reduction ≥50% in daily cigarette consumption were 67.4% and 55.6%, respectively (P=0.05; NNT=8.5) 	EVITA likely only enrolled patients who were motivated to quit smoking (especially with pharmacotherapy) Adverse event rates within 30 d of study drug discontinuation were similar between groups (serious adverse events: varenicline 11.9%, placebo 11.3%; major adverse cardiovascular events: varenicline 4.0%, placebo 4.6%)	Varenicline, started in-hospital among smokers hospitalized with an acute vascular event, was efficacious for smoking cessation at 6 mo post hospitalization

Using a pharmacotherapy for smoking cessation at the time of ACS History of neuropsychiatric disorders including suicidal attempts or suicidal ideation, family history of suicide, panic disorder, psychosis, bipolar disorder, dementia, bulimia, anorexia or
recent or recurring depression

Abbreviations: ACS indicates acute coronary syndrome; d, day; and NNT, number needed to treat. **Literature search topic**: Smoking

Table LXXXII. Nonrandomized Studies Regarding Early Initiation of Smoking Cessation in AIS patients Who Actively Smoke

Study Acronym;	Study Type/Design;	Patient Population	Primary End Point and Results	Summary
Author;	Study Size		(P value; OR or RR;	Conclusions
Year Published			& 95% CI)	Comments
Lee MJ, et al. ³³⁵ 2016 <u>27615050</u>	Study type: Observational, study design: • Subjects who participated in a timely interventions strategy (TI group) were compared with those who received conventional counseling (CC group) • For the TI group, a certified nurse provided	Inclusion criteria: Smokers hospitalized for acute ischemic stroke Exclusion criteria: Impaired consciousness, communication difficulties (aphasia or cognitive dysfunction), terminal illnesses, deaths during hospitalization, and	Primary End Point: Point smoking success rate and sustained smoking cessation rate for 12 mo Results: • TI group (n=86) and CC group (n=71) • TI group showed a higher point smoking success rate vs. CC group (<i>P</i> =.003) • Multiple logistic regression analysis revealed that TI group was more likely to sustain smoking cessation for 12 mo vs. CC group (OR, 2.96; 95% CI, 1.43–6.13)	Initiating multiple interventions during stroke hospitalization and regular follow-up after hospital discharge are more effective than conventional smoking cessation counseling in men with an acute ischemic stroke Not necessarily generalizable to women or other race-ethnicities or healthcare systems

	comprehensive education during admission and additional counseling after discharge Size: N=157 male subjects	serious neurological, medical or psychological illness • Patients who refused counseling for smoking cessation or regular follow-up		
Stead LF, et al. ³³² 2016 27009521	Study type: Meta- analysis; study design: a search of the Cochrane Tobacco Addiction Group Specialized Register in July 2015 Size: 53 trials (>25000 subjects)	Inclusion criteria: Randomized or quasi- randomized controlled trials evaluating combinations of pharmacotherapy and behavioral support for smoking cessation, compared to a control receiving usual care or brief advice or less intensive behavioral support Exclusion criteria: Trials recruiting only pregnant women, trials recruiting only adolescents, and trials with < 6 mo follow-up	1° end point: Abstinence from smoking after at least 6 mo of follow-up Results: Based on 52 studies (19,488 participants), there was high quality evidence for a benefit of combined pharmacotherapy and behavioral treatment vs. usual care, brief advice or less intensive behavioral support (RR, 1.83; 95% CI, 1.68–1.98) with moderate statistical heterogeneity (I²=36%) Pooled estimate for 43 trials that recruited participants in healthcare settings (RR, 1.97; 95% CI, 1.79-2.18) was higher than for eight trials with community-based recruitment (RR, 1.53, 95% CI, 1.33–1.76)	Interventions that combine pharmacotherapy and behavioral support boost smoking cessation success vs. a minimal intervention or usual care
Stead LF, et al. ³³³ 2015 26457723	Study type: Meta- analysis; study design: a search of the Cochrane Tobacco Addiction Group Specialized Register in May 2015 Size: 47 trials (>18,000 subjects)	Inclusion criteria: Randomized or quasi-randomized controlled trials in which all participants got pharmacotherapy for smoking cessation The intervention condition had to involve person-to-person contact	1° end point: Abstinence from smoking after at least 6 mo of follow-up Results: • Small but statistically significant benefit from more intensive support (RR, 1.17; 95% CI, 1.11–1.24) for abstinence at longest follow-up; most trials used NRT • Studies where all intervention counselling was via telephone (RR, 1.28; 95% CI, 1.17–1.41; 6 trials, 5311 participants) also had slightly larger effects	Providing behavioral support in person or via telephone for people using pharmacotherapy to stop smoking had a significant yet modest effect

Rigotti NA, et al. ³³¹ 2012 22592676	Study type: • Meta-analysis of randomized and quasi-randomized trials of behavioral, pharmacological or multicomponent interventions to help patients stop smoking, conducted with hospitalized patients who were current smokers or recent quitters • Study design: search of the Cochrane Tobacco Addiction Group register in December 2011 for studies of interventions for smoking cessation in hospitalized patients Size: N=50 trials	Exclusion criteria: Studies that used a contact-matched control to evaluate differences between types or components of support Trials recruiting only pregnant women, trials recruiting only adolescents, and trials with less than 6 mo follow-up Inclusion criteria: Intervention had to begin in the hospital but could continue after hospital discharge Exclusion criteria: Studies of patients admitted to facilities that primarily treat psychiatric disorders or substance abuse, studies that did not report abstinence rates and studies with follow-up <6 mo	1° end point: Abstinence from smoking at least 6 mo after the start of the intervention Results: • Intensive counselling interventions that began during the hospital stay and continued with supportive contacts for at least 1 mo after discharge increased smoking cessation rates after discharge RR: 1.37, 95% CI: 1.27–1.48; 25 trials) • Adding NRT to an intensive counselling intervention increased smoking cessation rates compared with intensive counselling alone (RR, 1.54; 95% CI, 1.34–1.79, six trials) • Adding varenicline to intensive counselling had a nonsignificant effect in two trials (RR, 1.28; 95% CI, 0.95–1.74) • In the subgroup of smokers admitted to hospital because of cardiovascular disease, intensive intervention with follow-up support increased the rate of smoking cessation (RR, 1.42; 95% CI, 1.29–1.56), but less intensive interventions did not	High intensity behavioral interventions started during a hospital stay and include at least 1 mo of supportive contact after discharge enhance smoking cessation rates among hospitalized patients Furthermore, adding NRT to intensive counselling significantly increased cessation rates over counselling alone
---	--	---	---	--

Abbreviations: CI indicates confidence interval; CC, conventional counseling; NRT, nicotine replacement therapy; RR, risk ratio; and TI, timely interventions strategy. Literature search topic: Smoking

Table LXXXIII. Original Wording of Recommendations Reworded from Previous Guidelines and Statements

2018 AIS GL Section/Rec # or Table/Heading	Original Wording of Recommendation* Reworded for Clarity in 2018 AIS GL
1.2. Rec 1	The use of a stroke assessment system by first aid providers is recommended.
1.2. Rec 3	EMS personnel should provide prehospital notification to the receiving hospital that a potential stroke patient is en route so that the appropriate hospital resources may be mobilized before patient arrival.
1.3. Rec 1	EMS leaders in coordination with local, regional, and state agencies and in consultation with medical authorities and local experts should develop triage paradigms and protocols that ensure that all patients with a known or suspected stroke are rapidly identified and assessed by use of a validated and standardized instrument for stroke screening, such as the FAST (face, arm, speech test) scale, LAPSS, or the Cincinnati Prehospital Stroke Scale (CPSS).
1.3. Rec 2	Regional systems of stroke care should be developed. These should consist of the following: a. Healthcare facilities that provide initial emergency care, including administration of intravenous r-tPA, such as primary stroke centers, comprehensive stroke centers, and other facilities, and
	b. Centers capable of performing endovascular stroke treatment with comprehensive periprocedural care, including comprehensive stroke centers and other healthcare facilities, to which rapid transport can be arranged when appropriate.
1.3. Rec 3	Patients should be transported rapidly to the closest available certified PSC or CSC or, if no such centers exist, the most appropriate institution that provides emergency stroke care as described in the statement.
1.4. Rec 1	Certification of stroke centers by an independent external body, such as TJC or state health department, is recommended. Additional medical centers should seek such certification.
1.6. Rec 2	When implemented within a telestroke network, teleradiology systems approved by the Food and Drug Administration (or equivalent organization) are useful in supporting rapid imaging interpretation in time for fibrinolysis decision making.
1.7. Rec 1	It may be useful for primary stroke centers and other healthcare facilities that provide initial emergency care, including administration of intravenous r-tPA, to develop the capability of performing emergency noninvasive intracranial vascular imaging to most appropriately select patients for transfer for endovascular intervention and to reduce the time to endovascular treatment
1.7. Rec 2	Endovascular therapy requires the patient to be at an experienced stroke center with rapid access to cerebral angiography and qualified neurointerventionalists. Systems should be designed, executed, and monitored to emphasize expeditious assessment and treatment. Outcomes for all patients should be tracked. Facilities are encouraged to define criteria that can be used to credential individuals who can perform safe and timely intraarterial revascularization procedures.
2.1. Rec 1	The use of a stroke rating scale, preferably the National Institutes of Health Stroke Scale (NIHSS), is recommended.
2.2. Rec 8	If endovascular therapy is contemplated, a noninvasive intracranial vascular study is strongly recommended during the initial imaging evaluation of the acute stroke patient but should not delay intravenous r-tPA if indicated. For patients who qualify for intravenous r-tPA according to guidelines from professional medical societies, initiating intravenous r-tPA before noninvasive vascular imaging is recommended for patients who have not had noninvasive vascular imaging as part of their initial imaging assessment for stroke. Noninvasive intracranial vascular imaging should
	then be obtained as quickly as possible.
2.3. Rec 2	Baseline electrocardiogram assessment is recommended in patients presenting with acute ischemic stroke but should not delay initiation of intravenous rtPA.
2.3. Rec 3	Baseline troponin assessment is recommended in patients presenting with acute ischemic stroke but should not delay initiation of intravenous rtPA.

2.3. Rec 4	The usefulness of chest radiographs in the hyperacute stroke setting in the absence of evidence of acute pulmonary, cardiac, or pulmonary vascular disease is unclear. If obtained, they should not unnecessarily delay administration of fibrinolysis.
3.2. Rec 2	Patients who have elevated blood pressure and are otherwise eligible for treatment with intravenous rtPA should have their blood pressure carefully lowered so that their systolic blood pressure is <185 mm Hg and their diastolic blood pressure is <110 mm Hg before fibrinolytic therapy is initiated.
3.5. Rec 1	Intravenous rtPA (0.9 mg/kg, maximum dose 90 mg) is recommended for selected patients who may be treated within 3 hours of onset of ischemic stroke. Physicians should review the criteria outlined in Tables 10 and 11 (which are modeled on those used in the NINDS Trial) to determine the eligibility of the patient.
3.5. Rec 2	Intravenous rtPA (0.9 mg/kg, maximum dose 90 mg) is recommended for administration to eligible patients who can be treated in the time period of 3 to 4.5 hours after stroke onset. The eligibility criteria for treatment in this time period are similar to those for people treated at earlier time periods within 3 hours, with the following additional exclusion criteria: patients >80 years old, those taking oral anticoagulants regardless of INR, those with a baseline NIHSS score >25, those with imaging evidence of ischemic injury involving more than one third of the MCA territory, or those with a history of both stroke and diabetes mellitus.
3.5. Rec 8	Intravenous alteplase in patients who have received a dose of LMWH within the previous 24 hours is not recommended. This applies to both prophylactic doses and treatment doses.
3.5. Rec 11	Treating clinicians should be aware that hypoglycemia and hyperglycemia may mimic acute stroke presentations and check blood glucose levels before intravenous initiation. Intravenous alteplase is not indicated for nonvascular conditions.
3.5. Rec 12	Because time from onset of symptoms to treatment has such a powerful impact on outcome, delaying treatment with intravenous alteplase to monitor for further improvement is not recommended.
3.5. Rec 13	In patients undergoing fibrinolytic therapy, physicians should be aware of and prepared to emergently treat potential side effects, including bleeding complications and angioedema that may cause partial airway obstruction.
3.5. Rec 14	Patients who have elevated blood pressure and are otherwise eligible for treatment with intravenous rtPA should have their blood pressure carefully lowered (Table 9) so that their systolic blood pressure is <185 mm Hg and their diastolic blood pressure is <110 mm Hg before fibrinolytic therapy is initiated. If medications are given to lower blood pressure, the clinician should be sure that the blood pressure is stabilized at the lower level before beginning treatment with intravenous rtPA and maintained below 180/105 mm Hg for at least the first 24 hours after intravenous rtPA treatment.
3.5. Rec 16	In patients eligible for intravenous rtPA, benefit of therapy is time dependent, and treatment should be initiated as quickly as possible. The door-to-needle time (time of bolus administration) should be within 60 minutes from hospital arrival.
3.7. Rec 1	Patients eligible for intravenous r-tPA should receive intravenous r-tPA even if endovascular treatments are being considered.
3.7. Rec 4	Although the benefits are uncertain, the use of endovascular therapy with stent retrievers may be reasonable for carefully selected patients with acute ischemic stroke in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the M2 or M3 portion of the MCAs, anterior cerebral arteries, vertebral arteries, basilar artery, or posterior cerebral arteries.
3.7. Rec 5	Although the benefits are uncertain, the use of endovascular therapy with stent retrievers may be reasonable for carefully selected patients with acute ischemic stroke in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the M2 or M3 portion of the MCAs, anterior cerebral arteries, vertebral arteries, basilar artery, or posterior cerebral arteries.
3.7. Rec 9	The technical goal of the thrombectomy procedure should be a TICI grade 2b/3 angiographic result to maximize the probability of a good functional clinical outcome.
3.7. Rec 14	Use of salvage technical adjuncts, including intraarterial fibrinolysis, may be reasonable to achieve these angiographic results if completed within 6 hours of symptom onset.
3.8. Rec 2	Initial treatment with intra-arterial fibrinolysis is beneficial for carefully selected patients with major ischemic strokes of <6 hours' duration caused by occlusions of the MCA. However, these data are derived from clinical trials that no longer reflect current practice, including the use of fibrinolytic drugs that are not available. A clinically beneficial dose of intra-arterial r-tPA is not established, and r-tPA does not have US Food and Drug Administration

	approval for intra-arterial use. As a consequence, endovascular therapy with stent retrievers is recommended over intra-arterial fibrinolysis as first-line therapy
3.8. Rec 3	Intra-arterial fibrinolysis initiated within 6 hours of stroke onset in carefully selected patients who have contraindications to the use of intravenous r-tPA might be considered, but the consequences are unknown.
3.11. Rec 4	At present, use of devices to augment cerebral blood flow for the treatment of patients with acute ischemic stroke is not well established. These devices should be used in the setting of clinical trials.
3.12. Rec 1	At present, no pharmacological agents with putative neuroprotective actions have demonstrated efficacy in improving outcomes after ischemic stroke, and therefore, other neuroprotective agents are not recommended.
3.13. Rec 2	In patients with unstable neurological status (either stroke-in-evolution or crescendo TIA), the efficacy of emergent or urgent carotid endarterectomy is not well established.
4.2. Rec 3	Supplemental oxygen is not recommended in nonhypoxic patients with acute ischemic stroke.
4.6. Rec 2	Dysphagia screening is reasonable by a speech-language pathologist or other trained healthcare provider.
4.6. Rec 4	Selection of instrumental study (fiberoptic endoscopic evaluation of swallowing, videofluoroscopy, fiberoptic endoscopic evaluation of swallowing with sensory testing) may be based on availability or other considerations.
5.1. Rec 9	Osmotic therapy for patients with clinical deterioration from cerebral swelling associated with cerebral infarction is reasonable.
5.2. Rec 1	Recurrent seizures after stroke should be treated in a manner similar to other acute neurological conditions, and antiepileptic agents should be selected by specific patient characteristics.
5.2. Rec 2	Prophylactic use of anticonvulsants is not recommended.
6.4. Rec 1	After a TIA or ischemic stroke, all patients should probably be screened for DM with testing of fasting plasma glucose, HbA1c, or an oral glucose tolerance test. Choice of test and timing should be guided by clinical judgment and recognition that acute illness may temporarily perturb measures of plasma glucose. In general, HbA1c may be more accurate than other screening tests in the immediate postevent period.
6.6. Rec 1	Baseline troponin assessment is recommended in patients presenting with acute ischemic stroke but should not delay initiation of intravenous rtPA.
6.6. Rec 2	Routine screening for hyperhomocysteinemia among patients with a recent ischemic stroke or TIA is not indicated.
6.6. Rec 3	The usefulness of screening for thrombophilic states in patients with ischemic stroke or TIA is unknown.
6.6. Rec 4	Anticoagulation might be considered in patients who are found to have abnormal findings on coagulation testing after an initial ischemic stroke or TIA, depending on the abnormality and the clinical circumstances.
6.6. Rec 5	Routine testing for antiphospholipid antibodies is not recommended for patients with ischemic stroke or TIA who have no other manifestations of the antiphospholipid antibody syndrome and who have an alternative explanation for their ischemic event, such as atherosclerosis, carotid stenosis, or AF.
6.7. Rec 1	For patients with noncardioembolic ischemic stroke or TIA, the use of antiplatelet agents rather than oral anticoagulation is recommended to reduce the risk of recurrent stroke and other cardiovascular events.
6.7. Rec 4	The selection of an antiplatelet agent should be individualized on the basis of patient risk factor profiles, cost, tolerance, relative known efficacy of the agents, and other clinical characteristics.
6.7. Rec 5	For patients with a history of ischemic stroke or TIA, AF, and CAD, the usefulness of adding antiplatelet therapy to VKA therapy is uncertain for purposes of reducing the risk of ischemic cardiovascular and cerebrovascular events (Class IIb; Level of Evidence C). Unstable angina and coronary artery stenting represent special circumstances in which management may warrant DAPT/VKA therapy.
6.10. Rec 1	Healthcare providers should strongly advise every patient with stroke or TIA who has smoked in the past year to quit.
6.10. Rec 6	It is reasonable to advise patients after TIA or ischemic stroke to avoid environmental (passive) tobacco smoke.

Table 6: Within 3 h	Intravenous alteplase (0.9 mg/kg; maximum dose, 90 mg) is recommended for selected patients who may be treated within 3 hours of onset of ischemic stroke. Physicians should review the criteria outlined in Tables 10 and 11 (which are modeled on those used in the 2 NINDS trials) to determine the eligibility of the patient.
Table 6: Age	For otherwise medically eligible patients ≥18 years of age, intravenous alteplase administration within 3 hours is equally recommended for patients <80 and >80 years of age. Older age is an adverse prognostic factor in stroke but does not modify the treatment effect of thrombolysis. Although older patients have poorer outcomes, higher mortality, and higher rates of sICH than those <80 years of age, compared with control subjects, intravenous alteplase provides a better chance of being independent at 3 months across all age groups.
Table 6: 3-4.5 h Table 6: Age, Diabetes mellitus, Prior stroke, Severity, OACs, Imaging	Intravenous alteplase (0.9 mg/kg; maximum dose, 90 mg) is recommended for administration to eligible patients who can be treated in the time period of 3 to 4.5 hours after stroke onset. The eligibility criteria for treatment in this time period are similar to those for people treated at earlier time periods within 3 hours, with the following additional exclusion criteria: patients >80 years old, those taking oral anticoagulants (OACs) regardless of international normalized ratio (INR), those with a baseline NIHSS score >25, those with imaging evidence of ischemic injury involving more than one third of the middle cerebral artery (MCA) territory, or those with a history of both stroke and diabetes mellitus.
Table 6: Severity 0- to 3-h window	Within 3 hours from symptom onset, treatment of patients with milder ischemic stroke symptoms that are judged as nondisabling may be considered. Treatment risks should be weighed against possible benefits; however, more study is needed to further define the risk-to-benefit ratio.
Table 6: Severity 3- to 4.5-h window	The benefit of intravenous alteplase administration for acute stroke patients with a baseline NIHSS score >25 and presenting in the 3- to 4.5-hour window is uncertain.
Table 6: Preexisting disability	Preexisting disability does not seem to independently increase the risk of sICH after intravenous alteplase, but it may be associated with less neurological improvement and higher mortality. Thrombolytic therapy with intravenous alteplase for acute stroke patients with preexisting disability (mRS score ≥2) may be reasonable, but decisions should take into account relevant factors other than mRS (including quality of life, social support, place of residence, need for a caregiver after alteplase administration, patients' and families' preferences, and goals of care).
Table 6: Coagulopathy	Intravenous alteplase may be reasonable in patients who have a history of warfarin use and an INR ≤1.7.
Table 6: Menstruation	When there is a history of recent or active vaginal bleeding causing clinically significant anemia, then emergent consultation with a gynecologist is probably indicated before a decision about intravenous alteplase is made.
Table 6: Extracranial cervical dissections	Intravenous alteplase in acute ischemic stroke known or suspected to be associated with extracranial cervical arterial dissection is reasonably safe within 4.5 hours and is probably recommended.
Table 6: Recent MI	For patients presenting with acute ischemic stroke and a history of recent MI in the past 3 months, treating the ischemic stroke with intravenous alteplase is reasonable if the recent MI was non-STEMI, is reasonable if the recent MI was STEMI involving the right or inferior myocardium, and may be reasonable if the recent MI was STEMI involving the left anterior myocardium.
Table 6: Pregnancy	Intravenous alteplase administration for ischemic stroke may be considered in pregnancy when the anticipated benefits of treating moderate to severe stroke outweigh the anticipated increased risks of uterine bleeding.

^{*}Original publication and date noted in 2018 AIS GL. Changes to Class and LOE, if any, are noted in the 2018 GL.

References

- 1. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
- 2. Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, deVeber G, Ferro JM, Tsai FY; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2011;42:1158–1192. doi: 10.1161/STR.0b013e31820a8364.
- 3. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:XXX–XXX. doi: 10.1161/STR. 000000000000160.
- 4. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Effect of dysphagia screening strategies on clinical outcomes after stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:XXX–XXX. doi: 10.1161/STR.0000000000000159.
- 5. Schwamm LH, Audebert HJ, Amarenco P, Chumbler NR, Frankel MR, George MG, Gorelick PB, Horton KB, Kaste M, Lackland DT, Levine SR, Meyer BC, Meyers PM, Patterson V, Stranne SK, White CJ; on behalf of the American Heart Association Stroke Council; Council on Epidemiology and Prevention; Interdisciplinary Council on Peripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association. *Stroke*. 2009;40:2635–2660. doi: 10.1161/STROKEAHA.109.192361.
- 6. Higashida R, Alberts MJ, Alexander DN, Crocco TJ, Demaerschalk BM, Derdeyn CP, Goldstein LB, Jauch EC, Mayer SA, Meltzer NM, Peterson ED, Rosenwasser RH, Saver JL, Schwamm L, Summers D, Wechsler L, Wood JP; on behalf of the American Heart Association Advocacy Coordinating Committee. Interactions within stroke systems of care: a policy statement from the American Heart Association/American Stroke Association. *Stroke*. 2013;44:2961–2984. doi: 10.1161/STR.0b013e3182a6d2b2.
- 7. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force

- on Practice Guidelines [published corrections appear in *Circulation*. 2014;129:S46–S48 and *Circulation*. 2015;132:e396]. *Circulation*. 2014;129(suppl 2):S1–S45. doi: 10.1161/01.cir.0000437738.63853.7a.
- 9. Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, Schwab S, Smith EE, Tamargo RJ, Wintermark M; on behalf of the American Heart Association Stroke Council. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:1222–1238. doi: 10.1161/01.str.0000441965.15164.d6.
- 10. Holloway RG, Arnold RM, Creutzfeldt CJ, Lewis EF, Lutz BJ, McCann RM, Rabinstein AA, Saposnik G, Sheth KN, Zahuranec DB, Zipfel GJ, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Clinical Cardiology. Palliative and end-of-life care in stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:1887–1916. doi: 10.1161/STR.00000000000000015.
- 11. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, Fang MC, Fisher M, Furie KL, Heck DV, Johnston SC, Kasner SE, Kittner SJ, Mitchell PH, Rich MW, Richardson D, Schwamm LH, Wilson JA; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in *Stroke*. 2015;46:e54]. *Stroke*. 2014;45:2160–2236. doi: 10.1161/STR.0000000000000024.
- 12. Smith EE, Saver JL, Alexander DN, Furie KL, Hopkins LN, Katzan IL, Mackey JS, Miller EL, Schwamm LH, Williams LS; on behalf of the AHA/ASA Stroke Performance Oversight Committee. Clinical performance measures for adults hospitalized with acute ischemic stroke: performance measures for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:3472–3498. doi: 10.1161/STR.000000000000000045.
- 14. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR; on behalf of the American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding

- endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2015;46:3020–3035. doi: 10.1161/STR.0000000000000074.
- 15. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, Saposnik G, Saver JL, Smith EE; on behalf of the American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in *Stroke*. 2016;47:e262]. *Stroke*. 2016;47:581–641. doi: 10.1161/STR.00000000000000086.
- 16. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/ American Stroke Association [published corrections appear in *Stroke*. 2017;48:e78 and Stroke. 2017;48:e369]. *Stroke*. 2016;47:e98–e169. doi: 10.1161/STR.0000000000000000088.
- 17. Ojike N, Ravenell J, Seixas A, Masters-Israilov A, Rogers A, Jean-Louis G, Ogedegbe G, McFarlane SI. Racial disparity in stroke awareness in the US: an analysis of the 2014 National Health Interview Survey. *J Neurol Neurophysiol*. 2016;7:365.
- 18. Ekundayo OJ, Saver JL, Fonarow GC, Schwamm LH, Xian Y, Zhao X, Hernandez AF, Peterson ED, Cheng EM. Patterns of emergency medical services use and its association with timely stroke treatment: findings from Get With The Guidelines–Stroke. *Circ Cardiovasc Qual Outcomes*. 2013;6:262–269. doi: 10.1161/CIRCOUTCOMES.113.000089.
- 19. Mochari-Greenberger H, Xian Y, Hellkamp AS, Schulte PJ, Bhatt DL, Fonarow GC, Saver JL, Reeves MJ, Schwamm LH, Smith EE. Racial/ethnic and sex differences in emergency medical services transport among hospitalized US Stroke patients: analysis of the national Get With The Guidelines-Stroke Registry. *J Am Heart Assoc.* 2015;4:e002099. doi: 10.1161/JAHA.115.002099.
- 20. Boden-Albala B, Stillman J, Roberts ET, Quarles LW, Glymour MM, Chong J, Moats H, Torrico V, Parides MC. Comparison of acute stroke preparedness strategies to decrease emergency department arrival time in a multiethnic cohort: the Stroke Warning Information and Faster Treatment Study. *Stroke*. 2015;46:1806–1812. doi: 10.1161/STROKEAHA.114.008502.
- 21. Berglund A, Svensson L, Wahlgren N, von Euler M; HASTA Collaborators. Face Arm Speech Time Test use in the prehospital setting, better in the ambulance than in the emergency medical communication center. *Cerebrovasc Dis.* 2014;37:212–216. doi: 10.1159/000358116.
- 22. De Luca A, Giorgi Rossi P, Villa GF; Stroke Group Italian Society Pre Hospital EMERGENCY SERVICES. The use of Cincinnati Prehospital Stroke Scale during telephone dispatch interview increases the accuracy in identifying stroke and transient ischemic attack symptoms. *BMC Health Serv Res.* 2013;13:513. doi: 10.1186/1472-6963-13-513.
- 23. Lin CB, Peterson ED, Smith EE, Saver JL, Liang L, Xian Y, Olson DM, Shah BR, Hernandez AF, Schwamm LH, Fonarow GC. Emergency medical service hospital prenotification is associated with improved evaluation and treatment of acute ischemic stroke. *Circ Cardiovasc Qual Outcomes*. 2012;5:514–522. doi: 10.1161/CIRCOUTCOMES.112.965210.

- 24. Katz BS, McMullan JT, Sucharew H, Adeoye O, Broderick JP. Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale. *Stroke*. 2015;46:1508–1512. doi: 10.1161/STROKEAHA.115.008804.
- 25. Lima FO, Silva GS, Furie KL, Frankel MR, Lev MH, Camargo ÉC, Haussen DC, Singhal AB, Koroshetz WJ, Smith WS, Nogueira RG. Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes. *Stroke*. 2016;47:1997–2002. doi: 10.1161/STROKEAHA.116.013301.
- 26. Perez de la Ossa N, Carrera D, Gorchs M, Querol M, Millan M, Gomis M, Dorado L, Lopez-Cancio E, Hernandez-Perez M, Chicharro V, Escalada X, Jimenez X, Davalos A. Design and validation of a pre-hospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. *Stroke*. 2014;45:87–91. doi: 10.1161/STROKEAHA.113.003071.
- 27. Hastrup S, Damgaard D, Johnsen SP, Andersen G. Prehospital acute stroke severity scale to predict large artery occlusion: design and comparison with other scales. *Stroke*. 2016;47:1772–1776. doi: 10.1161/STROKEAHA.115.012482.
- 28. Singer OC, Dvorak F, du Mesnil de Rochemont R, Lanfermann H, Sitzer M, Neumann-Haefelin T. A simple 3-item stroke scale: comparison with the National Institutes of Health Stroke Scale and prediction of middle cerebral artery occlusion. *Stroke*. 2005;36:773–776. doi: 10.1161/01. STR.0000157591.61322.df.
- 29. Nazliel B, Starkman S, Liebeskind DS, Ovbiagele B, Kim D, Sanossian N, Ali L, Buck B, Villablanca P, Vinuela F, Duckwiler G, Jahan R, Saver JL. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions. *Stroke*. 2008;39:2264–2267. doi: 10.1161/STROKEAHA.107.508127.
- 30. American Heart Association/American Stroke Association. Severity-Based Stroke Triage Algorithm for EMS. http://www.heart.org/mission-lifelinestroke. Accessed December 1, 2017.
- 31. Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. *JAMA*. 2013;309:2480–2488.
- 32. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF, du Mesnil de Rochemont R, Berkhemer OA, Jovin TG, Siddiqui AH, van Zwam WH, Davis SM, Castaño C, Sapkota BL, Fransen PS, Molina C, van Oostenbrugge RJ, Chamorro Á, Lingsma H, Silver FL, Donnan GA, Shuaib A, Brown S, Stouch B, Mitchell PJ, Davalos A, Roos YB, Hill MD; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. *JAMA*. 2016;316:1279–1288. doi: 10.1001/jama.2016.13647.
- 33. Ganesh A, Lindsay P, Fang J, Kapral MK, Côté R, Joiner I, Hakim AM, Hill MD. Integrated systems of stroke care and reduction in 30-day mortality: a retrospective analysis. *Neurology*. 2016;86:898–904. doi: 10.1212/WNL.000000000002443.
- 34. Man S, Cox M, Patel P, Smith EE, Reeves MJ, Saver JL, Bhatt DL, Xian Y, Schwamm LH, Fonarow GC. Differences in acute ischemic stroke quality of care and outcomes by primary stroke center certification organization. *Stroke*. 2017;48:412–419. doi: 10.1161/STROKEAHA.116.014426.

- 35. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Xian Y, Hernandez AF, Peterson ED, Schwamm LH. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. *JAMA*. 2014;311:1632–1640.
- 36. Xian Y, Xu H, Lytle B, Blevins J, Peterson ED, Hernandez AF, Smith EE, Saver JL, Messe SR, Paulsen M, Suter RE, Reeves MJ, Jauch EC, Schwamm LH, Fonarow GC. Use of strategies to improve door-to-needle times with tissue-type plasminogen activator in acute ischemic stroke in clinical practice: findings from Target: Stroke. *Circ Cardiovasc Qual Outcomes*. 2017;10:e003227. doi: 10.1161/CIRCOUTCOMES.116.003227.
- 37. Target Stroke Phase II website http://www.strokeassociation.org/STROKEORG/Professionals/TargetStroke/Target-Stroke-Phase-II_UCM_469859_Article.jsp#.Wk1CBd-nF3g. Accessed January 3, 2018.
- 38. Scott PA, Meurer WJ, Frederiksen SM, Kalbfleisch JD, Xu Z, Haan MN, Silbergleit R, Morgenstern LB; INSTINCT Investigators. A multilevel intervention to increase community hospital use of alteplase for acute stroke (INSTINCT): a cluster-randomised controlled trial. *Lancet Neurol.* 2013;12:139–148. doi: 10.1016/S1474-4422(12)70311-3.
- 39. Dirks M, Niessen LW, van Wijngaarden JD, Koudstaal PJ, Franke CL, van Oostenbrugge RJ, Huijsman R, Lingsma HF, Minkman MM, Dippel DW; PRomoting ACute Thrombolysis in Ischemic StrokE (PRACTISE) Investigators. Promoting thrombolysis in acute ischemic stroke. *Stroke*. 2011;42:1325–1330. doi: 10.1161/STROKEAHA.110.596940.
- 40. Phabphal K, Hirunpatch S. The effectiveness of low-cost teleconsultation for emergency head computer tomography in patients with suspected stroke. *J Telemed Telecare*. 2008;14:439–442. doi: 10.1258/jtt.2008.080603.
- 41. Mitchell JR, Sharma P, Modi J, Simpson M, Thomas M, Hill MD, Goyal, M. A smartphone client-server teleradiology system for primary diagnosis of acute stroke. *J Med Internet Res.* 2011;13:e31. doi: 10.2196/jmir.1732.
- 42. Johnston KC, Worrall BB; Teleradiology Assessment of Computerized Tomographs Online Reliability Study. Teleradiology Assessment of Computerized Tomographs Online Reliability Study (TRACTORS) for acute stroke evaluation. *Telemed J E Health*. 2003;9:227–233. doi: 10.1089/153056203322502605.
- 43. Demaerschalk BM, Bobrow BJ, Raman R, Ernstrom K, Hoxworth JM, Patel AC, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Meyer BC; for the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) in Arizona—The Initial Mayo Clinic Experience (AZ TIME) Investigators. CT interpretation in a telestroke network: agreement among a spoke radiologist, hub vascular neurologist, and hub neuroradiologist. *Stroke*. 2012;43:3095–3097. doi: 10.1161/STROKEAHA.112.666255.
- 44. Spokoyny I, Raman R, Ernstrom K, Demaerschalk BM, Lyden PD, Hemmen TM, Guzik AK, Chen JY, Meyer BC. Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network. *J Stroke Cerebrovasc Dis.* 2014;23:511–515. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.023.
- 45. Puetz V, Bodechtel U, Gerber JC, Dzialowski I, Kunz A, Wolz M, Hentschel H, Schultheiss T, Kepplinger J, Schneider H, Wiedemann B, Wojciechowski C, Reichmann H, Gahn G, von Kummer R. Reliability of brain CT evaluation by stroke neurologists in telemedicine. *Neurology*. 2013;80:332–338. doi: 10.1212/WNL.0b013e31827f07d0.

- 46. Demaerschalk BM, Raman R, Ernstrom K, Meyer BC. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. *Telemed J E Health*. 2012;18:230–237. doi: 10.1089/tmj.2011.0116.
- 47. Kepplinger J, Barlinn K, Deckert S, Scheibe M, Bodechtel U, Schmitt J. Safety and efficacy of thrombolysis in telestroke: a systematic review and meta-analysis. *Neurology*. 2016;87:1344–1351. doi: 10.1212/WNL.000000000003148.
- 48. Fong WC, Ismail M, Lo JW, Li JT, Wong AH, Ng YW, Chan PY, Chan AL, Chan GH, Fong KW, Cheung NY, Wong GC, Ho HF, Chan ST, Kwok VW, Yuen BM, Chan JH, Li PC. Telephone and teleradiology-guided thrombolysis can achieve similar outcome as thrombolysis by neurologist on-site. *J Stroke Cerebrovasc Dis.* 2015;24:1223–1228. doi: 10.1016/j.jstrokecerebrovasdis.2015.01.022.
- 49. Barlinn J, Gerber J, Barlinn K, Pallesen LP, Siepmann T, Zerna C, Wojciechowski C, Puetz V, von Kummer R, Reichmann H, Linn J, Bodechtel U. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study. *Int J Stroke*. 2017;12:502–509. doi: 10.1177/1747493016681018.
- 50. Vagal A, Meganathan K, Kleindorfer DO, Adeoye O, Hornung R, Khatri P. Increasing use of computed tomographic perfusion and computed tomographic angiograms in acute ischemic stroke from 2006 to 2010. *Stroke*. 2014;45:1029–1034. doi: 10.1161/STROKEAHA.113.004332.
- 51. Demaerschalk BM, Yip TR. Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States. *Stroke*. 2005;36:2500–2503. doi: 10.1161/01. STR.0000185699.37843.14.
- 52. Demaerschalk BM, Durocher DL. How diagnosis-related group 559 will change the US Medicare cost reimbursement ratio for stroke centers. *Stroke*. 2007;38:1309–1312. doi: 10.1161/01.STR.0000260185.74694. a7.
- 53. Penaloza-Ramos MC, Sheppard JP, Jowett S, Barton P, Mant J, Quinn T, Mellor RM, Sims D, Sandler D, McManus RJ; on behalf of the BBC CLAHRC Investigators. Cost-effectiveness of optimizing acute stroke care services for thrombolysis. *Stroke*. 2014;45:553–562. doi: 10.1161/STROKEAHA.113.003216.
- 54. Tan Tanny SP, Busija L, Liew D, Teo S, Davis SM, Yan B. Cost-effectiveness of thrombolysis within 4.5 hours of acute ischemic stroke: experience from Australian stroke center. *Stroke*. 2013;44:2269–2274. doi: 10.1161/STROKEAHA.113.001295.
- 55. Health Quality Ontario. Mechanical thrombectomy in patients with acute ischemic stroke: a health technology assessment. *Ont Health Technol Assess Ser.* 2016;16:1–79.
- 56. Ganesalingam J, Pizzo E, Morris S, Sunderland T, Ames D, Lobotesis K. Cost-utility analysis of mechanical thrombectomy using stent retrievers in acute ischemic stroke. *Stroke*. 2015;46:2591–2598. doi: 10.1161/STROKEAHA.115.009396.
- 57. Song S, Fonarow GC, Olson DM, Liang L, Schulte PJ, Hernandez AF, Peterson ED, Reeves MJ, Smith EE, Schwamm LH, Saver JL. Association of Get With The Guidelines–Stroke program participation and clinical outcomes for Medicare beneficiaries with ischemic stroke. *Stroke*. 2016;47:1294–1302. doi: 10.1161/STROKEAHA.115.011874.
- 58. Generalized efficacy of t-PA for acute stroke: subgroup analysis of the NINDS t-PA Stroke Trial. Stroke. 1997;28:2119–2225.

- 59. Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, Woolson RF, Hansen MD. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). *Neurology*. 1999;53:126–131.
- 60. Frankel MR, Morgenstern LB, Kwiatkowski T, Lu M, Tilley BC, Broderick JP, Libman R, Levine SR, Brott T. Predicting prognosis after stroke: a placebo group analysis from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial. *Neurology*. 2000;55:952–959.
- 61. Wahlgren N, Ahmed N, Eriksson N, Aichner F, Bluhmki E, Dávalos A, Erilä T, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Köhrmann M, Larrue V, Lees KR, Machnig T, Roine RO, Toni D, Vanhooren G; for the Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy Investigators. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy (SITS-MOST). *Stroke*. 2008;39:3316–3322. doi: 10.1161/STROKEAHA.107.510768.
- 62. Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, Haley EC, Grotta J, Marler J. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. *Stroke*. 1994;25:2220–2226.
- 63. Josephson SA, Hills NK, Johnston SC. NIH Stroke Scale reliability in ratings from a large sample of clinicians. *Cerebrovasc Dis.* 2006;22:389–395. doi: 10.1159/000094857.
- 64. Lyden P, Raman R, Liu L, Emr M, Warren M, Marler J. National Institutes of Health Stroke Scale certification is reliable across multiple venues. *Stroke*. 2009;40:2507–2511. doi: 10.1161/STROKEAHA.108.532069.
- 65. Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Relationship of National Institutes of Health Stroke Scale to 30-day mortality in Medicare beneficiaries with acute ischemic stroke. *J Am Heart Assoc.* 2012;1:42–50. doi: 10.1161/JAHA.111.000034.
- 66. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. *Lancet.* 2007;369:293–298. doi: 10.1016/S0140-6736(07)60151-2.
- 67. Hwang DY, Silva GS, Furie KL, Greer DM. Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. *J Emerg Med.* 2012;42:559–565. doi: 10.1016/j.jemermed.2011.05.101.
- 68. Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, Wardlaw JM, Deeks JJ. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. *Cochrane Database Syst Rev.* 2009:CD007424.
- 69. Wardlaw J, Brazzelli M, Miranda H, Chappell F, McNamee P, Scotland G, Quayyum Z, Martin D, Shuler K, Sandercock P, Dennis M. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation. *Health Technol Assess.* 2014;18:1–368, v. doi: 10.3310/hta18270.

- 70. Wardlaw JM, Seymour J, Cairns J, Keir S, Lewis S, Sandercock P. Immediate computed tomography scanning of acute stroke is cost-effective and improves quality of life. *Stroke*. 2004;35:2477–2483. doi: 10.1161/01.STR.0000143453.78005.44.
- 71. Barber PA, Hill MD, Eliasziw M, Demchuk AM, Pexman JH, Hudon ME, Tomanek A, Frayne R, Buchan AM; ASPECTS Study Group. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. *J Neurol Neurosurg Psychiatry*. 2005;76:1528–1533. doi: 10.1136/jnnp.2004.059261.
- 72. Heidenreich JO, Hsu D, Wang G, Jesberger JA, Tarr RW, Zaidat OO, Sunshine JL. Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care. *Acta Radiol*. 2008;49:550–557. doi: 10.1080/02841850801958320.
- 73. Lees KR, Emberson J, Blackwell L, Bluhmki E, Davis SM, Donnan GA, Grotta JC, Kaste M, von Kummer R, Lansberg MG, Lindley RI, Lyden P, Murray GD, Sandercock PA, Toni D, Toyoda K, Wardlaw JM, Whiteley WN, Baigent C, Hacke W, Howard G; on behalf of the Stroke Thrombolysis Trialists' Collaborators Group. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. *Stroke*. 2016;47:2373–2379. doi: 10.1161/STROKEAHA.116.013644.
- 74. Aghaebrahim A, Streib C, Rangaraju S, Kenmuir CL, Giurgiutiu DV, Horev A, Saeed Y, Callaway CW, Guyette FX, Martin-Gill C, Pacella C, Ducruet AF, Jankowitz BT, Jovin TG, Jadhav AP. Streamlining door to recanalization processes in endovascular stroke therapy. *J Neurointerv Surg.* 2017;9:340–345. doi: 10.1136/neurintsurg-2016-012324.
- 75. Messe SR, Khatri P, Reeves MJ, Smith EE, Saver JL, Bhatt DL, Grau-Sepulveda MV, Cox M, Peterson ED, Fonarow GC, Schwamm LH. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry. *Neurology*. 2016;87:1565–1574.
- 76. Zaidi SF, Shawver J, Espinosa Morales A, Salahuddin H, Tietjen G, Lindstrom D, Parquette B, Adams A, Korsnack A, Jumaa MA. Stroke care: initial data from a county-based bypass protocol for patients with acute stroke. *J Neurointerv Surg.* 2017;9:631–635. doi: 10.1136/neurintsurg-2016-012476.
- 77. IST-3 Collaborative Group. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. *Lancet Neurol*. 2015;14:485–496.
- 78. Demchuk AM, Khan F, Hill MD, Barber PA, Silver B, Patel S, Levine SR; NINDS rt-PA Stroke Study Group. Importance of leukoaraiosis on CT for tissue plasminogen activator decision making: evaluation of the NINDS rt-PA Stroke Study. *Cerebrovasc Dis.* 2008;26:120–125. doi: 10.1159/000139658.
- 79. Dzialowski I, Hill MD, Coutts SB, Demchuk AM, Kent DM, Wunderlich O, von Kummer R. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. *Stroke*. 2006;37:973–978. doi: 10.1161/01.STR.0000206215.62441.56.
- 80. Demchuk AM, Hill MD, Barber PA, Silver B, Patel SC, Levine SR; for the NINDS rtPA Stroke Study Group, NIH. Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA Stroke Study. *Stroke*. 2005;36:2110–2115. doi: 10.1161/01.STR.0000181116.15426.58.

- 81. Patel SC, Levine SR, Tilley BC, Grotta JC, Lu M, Frankel M, Haley EC Jr, Brott TG, Broderick JP, Horowitz S, Lyden PD, Lewandowski CA, Marler JR, Welch KM; National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. *JAMA*. 2001;286:2830–2838.
- 82. Charidimou A, Pasi M, Fiorelli M, Shams S, von Kummer R, Pantoni L, Rost N. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: a meta-analysis (v1). *Stroke*. 2016;47:2364–2372. doi: 10.1161/STROKEAHA.116.014096.
- 83. Qureshi AI, Ezzeddine MA, Nasar A, Suri MF, Kirmani JF, Janjua N, Divani AA. Is IV tissue plasminogen activator beneficial in patients with hyperdense artery sign? *Neurology*. 2006;66:1171–1174. doi: 10.1212/01.wnl.0000208407.69544.5a.
- 84. Mair G, von Kummer R, Morris Z, von Heijne A, Bradey N, Cala L, Peeters A, Farrall AJ, Adami A, Potter G, Cohen G, Sandercock PA, Lindley RI, Wardlaw JM; IST-3 Collaborative Group. Effect of alteplase on the CT hyperdense artery sign and outcome after ischemic stroke. *Neurology*. 2016;86:118–125. doi: 10.1212/WNL.000000000002236.
- 85. Charidimou A, Shoamanesh A; International META-MICROBLEEDS Initiative. Clinical relevance of microbleeds in acute stroke thrombolysis: comprehensive meta-analysis. *Neurology*. 2016;87:1534–1541. doi: 10.1212/WNL.000000000003207.
- 86. Tsivgoulis G, Zand R, Katsanos AH, Turc G, Nolte CH, Jung S, Cordonnier C, Fiebach JB, Scheitz JF, Klinger-Gratz PP, Oppenheim C, Goyal N, Safouris A, Mattle HP, Alexandrov AW, Schellinger PD, Alexandrov AV. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. *JAMA Neurol*. 2016;73:675–683. doi: 10.1001/jamaneurol.2016.0292.
- 87. Tissue plasminogen activator for acute ischemic stroke: the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. *N Engl J Med.* 1995;333:1581–1587.
- 88. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP; DEFUSE Investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. *Ann Neurol.* 2006;60:508–517. doi: 10.1002/ana.20976.
- 89. Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, Ford I, Muir KW. Alteplase Versus Tenecteplase for Thrombolysis After Ischaemic Stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. *Lancet Neurol*. 2015;14:368–376. doi: 10.1016/S1474-4422(15)70017-7.
- 90. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000213.
- 91. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, O'Brien B, Bladin C, McElduff P, Allen C, Bateman G, Donnan G, Davis S, Levi C. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. *N Engl J Med.* 2012;366:1099–1107. doi: 10.1056/NEJMoa1109842.
- 92. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Söhngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S. Intravenous desmoteplase in patients with

- acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. *Lancet Neurol*. 2009;8:141–150. doi: 10.1016/S1474-4422(08)70267-9.
- 93. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, Chalk JB, Fink JN, Kimber TE, Schultz D, Hand PJ, Frayne J, Hankey G, Muir K, Gerraty R, Tress BM, Desmond PM; EPITHET Investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. *Lancet Neurol.* 2008;7:299–309. doi: 10.1016/S1474-4422(08)70044-9.
- 94. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, Sachara C, Soehngen M, Warach S, Hacke W; for the DEDAS Investigators. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. *Stroke*. 2006;37:1227–1231. doi: 10.1161/01.STR. 0000217403.66996.6d.
- 95. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S; for the DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. *Stroke*. 2005;36:66–73. doi: 10.1161/01.STR.0000149938.08731.2c.
- 96. Ehrlich ME, Turner HL, Currie LJ, Wintermark M, Worrall BB, Southerland AM. Safety of computed tomographic angiography in the evaluation of patients with acute stroke: a single-center experience. *Stroke*. 2016;47:2045–2050. doi: 10.1161/STROKEAHA.116.013973.
- 97. Aulicky P, Mikulík R, Goldemund D, Reif M, Dufek M, Kubelka T. Safety of performing CT angiography in stroke patients treated with intravenous thrombolysis. *J Neurol Neurosurg Psychiatry*. 2010;81:783–787. doi: 10.1136/jnnp.2009.184002.
- 98. Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, González RG, Koroshetz WJ, Smith WS, Furie KL. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy. *AJNR Am J Neuroradiol.* 2010;31:817–821. doi: 10.3174/ajnr.A1927.
- 99. Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. *AJNR Am J Neuroradiol.* 2008;29:1826–1830. doi: 10.3174/ajnr.A1257.
- 100. Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM. Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. *Stroke*. 2007;38:2364–2366. doi: 10.1161/STROKEAHA.107.482778.
- 101. Josephson SA, Dillon WP, Smith WS. Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging. *Neurology*. 2005;64:1805–1806. doi: 10.1212/01.WNL.0000161845.69114.62.
- 102. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó M, Millán M, Urra X, Cardona P, López-Cancio E, Tomasello A, Castaño C, Blasco J, Aja L, Dorado L, Quesada H, Rubiera M, Hernandez-Pérez M, Goyal M, Demchuk AM, von Kummer R, Gallofré M, Dávalos A; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. *N Engl J Med.* 2015;372:2296–2306. doi: 10.1056/NEJMoa1503780.
- 103. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, du Mesnil de Rochemont R, Singer OC,

- Jahan R; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. *N Engl J Med.* 2015;372:2285–2295. doi: 10.1056/NEJMoa1415061.
- 104. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. *N Engl J Med*. 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.
- 105. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, Wu TY, Brooks M, Simpson MA, Miteff F, Levi CR, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Priglinger M, Ang T, Scroop R, Barber PA, McGuinness B, Wijeratne T, Phan TG, Chong W, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. *N Engl J Med*. 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
- 106. Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, Guillemin F; THRACE Investigators. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. *Lancet Neurol.* 2016;15:1138–1147. doi: 10.1016/S1474-4422(16)30177-6.
- 107. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama à Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. *N Engl J Med.* 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
- 108. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct [published online ahead of print November 11, 2017]. *N Engl J Med.* doi: 10.1056/NEJMoa1706442. http://www.nejm.org/doi/full/10.1056/NEJMoa1706442.
- 109. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mylnash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk

- AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG; on behalf of the DEFUSE 3 Investigators. Thrombectomy for stroke with perfusion imaging selection at 6–16 hours. *N Engl J Med.* In press.
- 110. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, Lingsma HF, Sprengers ME, Jenniskens SF, Lycklama À Nijeholt GJ, van Walderveen MA, van den Berg R, Bot JC, Beenen LF, Boers AM, Slump CH, Roos YB, van Oostenbrugge RJ, Dippel DW, van der Lugt A, van Zwam WH, Marquering HA, Majoie CB; on behalf of the MR CLEAN Investigators. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. *Stroke*. 2016;47:768–776. doi: 10.1161/STROKEAHA.115.011788.
- 111. Menon BK, Qazi E, Nambiar V, Foster LD, Yeatts SD, Liebeskind D, Jovin TG, Goyal M, Hill MD, Tomsick TA, Broderick JP, Demchuk AM; for the Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III Trial. *Stroke*. 2015;46:1239–1244. doi: 10.1161/STROKEAHA.115.009009.
- 112. Saber H, Silver B, Santillan A, Azarpazhooh MR, Misra V, Behrouz R. Role of emergent chest radiography in evaluation of hyperacute stroke. *Neurology*. 2016;87:782–785. doi: 10.1212/WNL.000000000002964.
- 113. Roffe C, Nevatte T, Sim J, Bishop J, Ives N, Ferdinand P, Gray R; Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative Group. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: the Stroke Oxygen Study Randomized Clinical Trial. *JAMA*. 2017;318:1125–1135. doi: 10.1001/jama.2017.11463.
- 114. Bennett MH, Weibel S, Wasiak J, Schnabel A, French C, Kranke P. Hyperbaric oxygen therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD004954.
- 115. Heyboer M 3rd, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. *Adv Wound Care (New Rochelle)*. 2017;6:210–224. doi: 10.1089/wound.2016.0718.
- 116. Heyboer M 3rd, Jennings S, Grant WD, Ojevwe C, Byrne J, Wojcik SM. Seizure incidence by treatment pressure in patients undergoing hyperbaric oxygen therapy. *Undersea Hyperb Med.* 2014;41:379–385.
- 117. Wohlfahrt P, Krajcoviechova A, Jozifova M, Mayer O, Vanek J, Filipovsky J, Cifkova R. Low blood pressure during the acute period of ischemic stroke is associated with decreased survival. *J Hypertens*. 2015;33:339–345. doi: 10.1097/HJH.000000000000414.
- 118. Vemmos KN, Tsivgoulis G, Spengos K, Zakopoulos N, Synetos A, Manios E, Konstantopoulou P, Mavrikakis M. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. *J Intern Med.* 2004;255:257–265.
- 119. Okumura K, Ohya Y, Maehara A, Wakugami K, Iseki K, Takishita S. Effects of blood pressure levels on case fatality after acute stroke. *J Hypertens*. 2005;23:1217–1223.
- 120. Stead LG, Gilmore RM, Decker WW, Weaver AL, Brown RD Jr. Initial emergency department blood pressure as predictor of survival after acute ischemic stroke. *Neurology*. 2005;65:1179–1183. doi: 10.1212/01.wnl.0000180939.24845.22.
- 121. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A. Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome. *Stroke*. 2004;35:520–526. doi: 10.1161/01.STR.0000109769.22917.B0.

- 122. Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA; for the IST Collaborative Group. Blood pressure and clinical outcomes in the International Stroke Trial. *Stroke*. 2002;33:1315–1320.
- 123. Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Short-term blood pressure variability in acute stroke: post hoc analysis of the Controlling Hypertension and Hypotension Immediately Post Stroke and Continue or Stop Post-Stroke Antihypertensives collaborative study trials. *Stroke*. 2015;46:1518–1524. doi: 10.1161/STROKEAHA.115.009078.
- 124. Muscari A, Puddu GM, Serafini C, Fabbri E, Vizioli L, Zoli M. Predictors of short-term improvement of ischemic stroke. *Neurol Res.* 2013;35:594–601. doi: 10.1179/1743132813Y.0000000181.
- 125. Visvanathan A, Dennis M, Whiteley W. Parenteral fluid regimens for improving functional outcome in people with acute stroke. *Cochrane Database Syst Rev.* 2015:CD011138.
- 126. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, Jeerakathil T, Campbell BC, Barber PA, Bladin C, Fink J, Tress B, Donnan GA, Davis SM; for the EPITHET Investigators. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. *Stroke*. 2010;41:72–77. doi: 10.1161/STROKEAHA.109.563767.
- 127. Perini F, De Boni A, Marcon M, Bolgan I, Pellizzari M, Dionisio LD. Systolic blood pressure contributes to intracerebral haemorrhage after thrombolysis for ischemic stroke. *J Neurol Sci.* 2010;297:52–54. doi: 10.1016/j.jns.2010.06.025.
- 128. Toni D, Ahmed N, Anzini A, Lorenzano S, Brozman M, Kaste M, Mikulik R, Putaala J, Wahlgren N; SITS Investigators. Intravenous thrombolysis in young stroke patients: results from the SITS-ISTR. *Neurology*. 2012;78:880–887. doi: 10.1212/WNL.0b013e31824d966b.
- 129. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, Wahlgren N, Ahmed N; for the SITS Investigators. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. *Stroke*. 2012;43:1524–1531. doi: 10.1161/STROKEAHA.111.644815.
- 130. Wu W, Huo X, Zhao X, Liao X, Wang C, Pan Y, Wang Y, Wang Y; TIMS-CHINA Investigators. Relationship between blood pressure and outcomes in acute ischemic stroke patients administered lytic medication in the TIMS-China Study. *PLoS One*. 2016;11:e0144260. doi: 10.1371/journal.pone.0144260.
- 131. Endo K, Kario K, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, Furui E, Kimura K, Hasegawa Y, Okada Y, Okuda S, Namekawa M, Miyagi T, Osaki M, Minematsu K, Toyoda K. Impact of early blood pressure variability on stroke outcomes after thrombolysis: the SAMURAI rt-PA Registry. *Stroke*. 2013;44:816–818. doi: 10.1161/STROKEAHA.112.681007.
- 132. Waltimo T, Haapaniemi E, Surakka IL, Melkas S, Sairanen T, Sibolt G, Tatlisumak T, Strbian D. Post-thrombolytic blood pressure and symptomatic intracerebral hemorrhage. *Eur J Neurol.* 2016;23:1757–1762. doi: 10.1111/ene.13118.
- 133. Liu K, Yan S, Zhang S, Guo Y, Lou M. Systolic blood pressure variability is associated with severe hemorrhagic transformation in the early stage after thrombolysis. *Transl Stroke Res.* 2016;7:186–191. doi: 10.1007/s12975-016-0458-6.
- 134. Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, Finfer S, Beasley R, Hyam J, Menon D, Rowan K, Myburgh J. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. *Intensive Care Med.* 2015;41:823–832. doi: 10.1007/s00134-015-3676-6.

- 135. Lyden P, Hemmen T, Grotta J, Rapp K, Ernstrom K, Rzesiewicz T, Parker S, Concha M, Hussain S, Agarwal S, Meyer B, Jurf J, Altafullah I, Raman R. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). *Stroke*. 2016;47:2888–2895. doi: 10.1161/STROKEAHA.116.014200.
- 136. Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, Dippel DW, Kappelle LJ, van der Worp HB. COOLIST (Cooling for Ischemic Stroke Trial): a multicenter, open, randomized, phase ii, clinical trial. *Stroke*. 2017;48:219–221. doi: 10.1161/STROKEAHA.116.014757.
- 137. Piironen K, Tiainen M, Mustanoja S, Kaukonen KM, Meretoja A, Tatlisumak T, Kaste M. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: a randomized controlled trial. *Stroke*. 2014;45:486–491. doi: 10.1161/STROKEAHA.113.003180.
- 138. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD; for the ICTuS-L Investigators. Intravenous Thrombolysis Plus Hypothermia for Acute Treatment of Ischemic Stroke (ICTuS-L): final results. *Stroke*. 2010;41:2265–2270. doi: 10.1161/STROKEAHA.110.592295.
- 139. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. *Lancet*. 2004;363:768–774. doi: 10.1016/S0140-6736(04)15692-4.
- 140. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. *Lancet*. 2012;379:2364–2372. doi: 10.1016/S0140-6736(12)60738-7.
- 141. Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G; SITS-MOST investigators. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. *Lancet*. 2007;369:275–282. doi: 10.1016/S0140-6736(07)60149-4.
- 142. IST-3 Collaborative Group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, Ricci S, Murray V, Berge E, Slot KB, Hankey GJ, Correia M, Peeters A, Matz K, Lyrer P, Gubitz G, Phillips SJ, Arauz A. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial [IST-3]): a randomised controlled trial. *Lancet*. 2012;379:2352–2363.
- 143. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, Broderick JP, Chen X, Chen G, Sharma VK, Kim JS, Thang NH, Cao Y, Parsons MW, Levi C, Huang Y, Olavarría VV, Demchuk AM, Bath PM, Donnan GA, Martins S, Pontes-Neto OM, Silva F, Ricci S, Roffe C, Pandian J, Billot L, Woodward M, Li Q, Wang X, Wang J, Chalmers J; ENCHANTED Investigators and Coordinators. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. *N Engl J Med.* 2016;374:2313–2323. doi: 10.1056/NEJMoa1515510.

- 144. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. *N Engl J Med.* 2008;359:1317–1329. doi: 10.1056/NEJMoa0804656.
- 145. Bluhmki E, Chamorro A, Dávalos A, Machnig T, Sauce C, Wahlgren N, Wardlaw J, Hacke W. Stroke treatment with alteplase given 3.0-4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial. *Lancet Neurol.* 2009;8:1095–1102. doi: 10.1016/S1474-4422(09)70264-9.
- 146. Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO, Toni D, Ringleb P; SITS Investigators. Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR. *Lancet Neurol.* 2010;9:866–874. doi: 10.1016/S1474-4422(10)70165-4.
- 147. Romano JG, Smith EE, Liang L, Gardener H, Camp S, Shuey L, Cook A, Campo-Bustillo I, Khatri P, Bhatt DL, Fonarow GC, Sacco RL, Schwamm LH. Outcomes in mild acute ischemic stroke treated with intravenous thrombolysis: a retrospective analysis of the Get With the Guidelines-Stroke registry. *JAMA Neurol.* 2015;72:423–431. doi: 10.1001/jamaneurol.2014.4354.
- 148. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, Fonarow GC, Smith EE, Schwamm LH. Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from Get With The Guidelines–Stroke. *Stroke*. 2017;48:686–691. doi: 10.1161/STROKEAHA.116.015412.
- 149. Sloan MA, Price TR, Petito CK, Randall AM, Solomon RE, Terrin ML, Gore J, Collen D, Kleiman N, Feit F. Clinical features and pathogenesis of intracerebral hemorrhage after rt-PA and heparin therapy for acute myocardial infarction: the Thrombolysis in Myocardial Infarction (TIMI) II Pilot and Randomized Clinical Trial combined experience. *Neurology*. 1995;45:649–658.
- 150. Mahaffey KW, Granger CB, Sloan MA, Green CL, Gore JM, Weaver WD, White HD, Simoons ML, Barbash GI, Topol EJ, Califf RM. Neurosurgical evacuation of intracranial hemorrhage after thrombolytic therapy for acute myocardial infarction: experience from the GUSTO-I trial: Global Utilization of Streptokinase and Tissue-Plasminogen Activator (tPA) for Occluded Coronary Arteries. *Am Heart J*. 1999;138(pt 1):493–499.
- 151. Goldstein JN, Marrero M, Masrur S, Pervez M, Barrocas AM, Abdullah A, Oleinik A, Rosand J, Smith EE, Dzik WH, Schwamm LH. Management of thrombolysis-associated symptomatic intracerebral hemorrhage. *Arch Neurol.* 2010;67:965–969. doi: 10.1001/archneurol.2010.175.
- 152. French KF, White J, Hoesch RE. Treatment of intracerebral hemorrhage with tranexamic acid after thrombolysis with tissue plasminogen activator. *Neurocrit Care*. 2012;17:107–111. doi: 10.1007/s12028-012-9681-5.
- 153. Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. *JAMA Neurol.* 2014;71:1181–1185. doi: 10.1001/jamaneurol.2014.1210.
- 154. Yaghi S, Haggiagi A, Sherzai A, Marshall RS, Agarwal S. Use of recombinant factor VIIa in symptomatic intracerebral hemorrhage following intravenous thrombolysis. *Clin Pract.* 2015;5:756. doi: 10.4081/cp.2015.756.

- 155. Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S, Sands KA, Noorian AR, Blum CA, Chaudhary S, Schwamm LH, Liebeskind DS, Marshall RS, Willey JZ. Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study. *JAMA Neurol.* 2015;72:1451–1457. doi: 10.1001/jamaneurol.2015.2371.
- 156. Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, Silver B, Thompson B, Furie KL, Yaghi S. Therapies for hemorrhagic transformation in acute ischemic stroke. *Curr Treat Options Neurol.* 2017;19:1. doi: 10.1007/s11940-017-0438-5.
- 157. Frontera JA, Lewin JJ 3rd, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, del Zoppo GJ, Kumar MA, Peerschke EI, Stiefel MF, Teitelbaum JS, Wartenberg KE, Zerfoss CL. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for health-care professionals from the Neurocritical Care Society and Society of Critical Care Medicine. *Neurocrit Care*. 2016;24:6–46. doi: 10.1007/s12028-015-0222-x.
- 158. Foster-Goldman A, McCarthy D. Angioedema from recombinant TPA administration: case report and pathophysiology review. *Am J Ther*. 2013;20:691–693. doi: 10.1097/MJT.0b013e3182799083.
- 159. Gorski EM, Schmidt MJ. Orolingual angioedema with alteplase administration for treatment of acute ischemic stroke. *J Emerg Med*. 2013;45:e25–e26. doi: 10.1016/j.jemermed.2013.02.004.
- 160. Lewis LM. Angioedema: etiology, pathophysiology, current and emerging therapies. *J Emerg Med.* 2013;45:789–796. doi: 10.1016/j. jemermed.2013.03.045.
- 161. Lin SY, Tang SC, Tsai LK, Yeh SJ, Hsiao YJ, Chen YW, Chen KH, Yip BS, Shen LJ, Wu FL, Jeng JS. Orolingual angioedema after alteplase therapy of acute ischaemic stroke: incidence and risk of prior angiotensin-converting enzyme inhibitor use. *Eur J Neurol*. 2014;21:1285–1291. doi: 10.1111/ene.12472.
- 162. Correia AS, Matias G, Calado S, Lourenço A, Viana-Baptista M. Orolingual angiodema associated with alteplase treatment of acute stroke: a reappraisal. *J Stroke Cerebrovasc Dis.* 2015;24:31–40. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.045.
- 163. O'Carroll CB, Aguilar MI. Management of postthrombolysis hemorrhagic and orolingual angioedema complications. *Neurohospitalist*. 2015;5:133–141. doi: 10.1177/1941874415587680.
- 164. Myslimi F, Caparros F, Dequatre-Ponchelle N, Moulin S, Gautier S, Girardie P, Cordonnier C, Bordet R, Leys D. Orolingual angioedema during or after thrombolysis for cerebral ischemia. *Stroke*. 2016;47:1825–1830. doi: 10.1161/STROKEAHA.116.013334.
- 165. Pahs L, Droege C, Kneale H, Pancioli A. A novel approach to the treatment of orolingual angioedema after tissue plasminogen activator administration. *Ann Emerg Med.* 2016;68:345–348. doi: 10.1016/j.annemergmed.2016.02.019.
- 166. Jeong HG, Kim BJ, Yang MH, Han MK, Bae HJ, Lee SH. Stroke outcomes with use of antithrombotics within 24 hours after recanalization treatment. *Neurology*. 2016;87:996–1002. doi: 10.1212/WNL. 000000000003083.
- 167. von Kummer R, Mori E, Truelsen T, Jensen JS, Grønning BA, Fiebach JB, Lovblad KO, Pedraza S, Romero JM, Chabriat H, Chang KC, Dávalos A, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A, Albers GW; for the DIAS-4 Investigators. Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 Trial (Efficacy and Safety Study of Desmoteplase to Treat Acute Ischemic Stroke). *Stroke*. 2016;47:2880–2887. doi: 10.1161/STROKEAHA.116.013715.

- 168. Albers GW, von Kummer R, Truelsen T, Jensen JK, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. *Lancet Neurol.* 2015;14:575–584. doi: 10.1016/S1474-4422(15)00047-2.
- 169. Haley EC Jr, Thompson JL, Grotta JC, Lyden PD, Hemmen TG, Brown DL, Fanale C, Libman R, Kwiatkowski TG, Llinas RH, Levine SR, Johnston KC, Buchsbaum R, Levy G, Levin B; for the Tenecteplase in Stroke Investigators. Phase IIB/III trial of tenecteplase in acute ischemic stroke: results of a prematurely terminated randomized clinical trial. *Stroke*. 2010;41:707–711. doi: 10.1161/STROKEAHA. 109.572040.
- 170. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M, Tobro H, Kaur K, Stankiewicz M, Carlsson M, Morsund Å, Idicula T, Aamodt AH, Lund C, Næss H, Waje-Andreassen U, Thomassen L. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. *Lancet Neurol.* 2017;16:781–788. doi: 10.1016/S1474-4422(17)30253-3.
- 171. Nacu A, Kvistad CE, Naess H, Øygarden H, Logallo N, Assmus J, Waje-Andreassen U, Kurz KD, Neckelmann G, Thomassen L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. *Stroke*. 2017;48:335–341. doi: 10.1161/STROKEAHA.116.014644.
- 172. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *Lancet*. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X.
- 173. Campbell BC, Hill MD, Rubiera M, Menon BK, Demchuk A, Donnan GA, Roy D, Thornton J, Dorado L, Bonafe A, Levy EI, Diener HC, Hernández-Pérez M, Pereira VM, Blasco J, Quesada H, Rempel J, Jahan R, Davis SM, Stouch BC, Mitchell PJ, Jovin TG, Saver JL, Goyal M. Safety and efficacy of solitaire stent thrombectomy: individual patient data meta-analysis of randomized trials. *Stroke*. 2016;47:798–806. doi: 10.1161/STROKEAHA.115.012360.
- 174. Bush CK, Kurimella D, Cross LJ, Conner KR, Martin-Schild S, He J, Li C, Chen J, Kelly T. Endovascular treatment with stent-retriever devices for acute ischemic stroke: a meta-analysis of randomized controlled trials. *PLoS One*. 2016;11:e0147287. doi: 10.1371/journal.pone.0147287.
- 175. Lemmens R, Hamilton SA, Liebeskind DS, Tomsick TA, Demchuk AM, Nogueira RG, Marks MP, Jahan R, Gralla J, Yoo AJ, Yeatts SD, Palesch YY, Saver JL, Pereira VM, Broderick JP, Albers GW, Lansberg MG; DEFUSE 2, IMS III, STAR, and SWIFT Trialists; DEFUSE 2 IMS III STAR and SWIFT Trialists. Effect of endovascular reperfusion in relation to site of arterial occlusion. *Neurology*. 2016;86:762–770. doi: 10.1212/WNL.00000000000002399.

- 176. Yoo AJ, Simonsen CZ, Prabhakaran S, Chaudhry ZA, Issa MA, Fugate JE, Linfante I, Liebeskind DS, Khatri P, Jovin TG, Kallmes DF, Dabus G, Zaidat OO; for the Cerebral Angiographic Revascularization Grading Collaborators. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy. *Stroke*. 2013;44:2509–2512. doi: 10.1161/STROKEAHA.113.001990.
- 177. Marks MP, Lansberg MG, Mlynash M, Kemp S, McTaggart R, Zaharchuk G, Bammer R, Albers GW; DEFUSE 2 Investigators. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome. *J Neurointerv Surg*. 2014;6:724–728. doi: 10.1136/neurintsurg-2013-010973.
- 178. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, Saleme S, Costalat V, Bracard S, Desal H, Mazighi M, Consoli A, Piotin M; ASTER Trial Investigators. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. *JAMA*. 2017;318:443–452. doi: 10.1001/jama.2017.9644.
- 179. Dippel DW, Majoie CB, Roos YB, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Lingsma HF, Koudstaal PJ, Treurniet KM, van den Berg LA, Beumer D, Fransen PS, Berkhemer OA; for the MR CLEAN Investigators. Influence of device choice on the effect of intra-arterial treatment for acute ischemic stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). *Stroke*. 2016;47:2574–2581. doi: 10.1161/STROKEAHA.116.013929.
- 180. Berkhemer OA, van den Berg LA, Fransen PS, Beumer D, Yoo AJ, Lingsma HF, Schonewille WJ, van den Berg R, Wermer MJ, Boiten J, Lycklama À Nijeholt GJ, Nederkoorn PJ, Hollmann MW, van Zwam WH, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW, Roos YB; MR CLEAN Investigators. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. *Neurology*. 2016;87:656–664. doi: 10.1212/WNL.00000000000002976.
- 181. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, Dunker D, Schnabel K, Wikholm G, Hellström M, Ricksten SE. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (Anesthesia During Stroke). *Stroke*. 2017;48:1601–1607. doi: 10.1161/STROKEAHA.117.016554.
- 182. Schönenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, Nagel S, Klose C, Pfaff J, Bendszus M, Ringleb PA, Kieser M, Möhlenbruch MA, Bösel J. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. *JAMA*. 2016;316:1986–1996. doi: 10.1001/jama.2016.16623.
- 183. Jovin TG, Saver JL, Ribo M, Pereira V, Furlan A, Bonafe A, Baxter B, Gupta R, Lopes D, Jansen O, Smith W, Gress D, Hetts S, Lewis RJ, Shields R, Berry SM, Graves TL, Malisch T, Rai A, Sheth KN, Liebeskind DS, Nogueira RG. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neuro-intervention with Trevo (DAWN) trial methods. *Int J Stroke*. 2017;12:641–652. doi: 10.1177/1747493017710341.
- 184. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke: International Stroke Trial Collaborative Group. *Lancet*. 1997;349:1569–1581.

- 185. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke: CAST (Chinese Acute Stroke Trial) Collaborative Group. *Lancet*. 1997;349:1641–1649.
- 186. Sandercock PA, Counsell C, Tseng MC, Cecconi E. Oral antiplatelet therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD000029.
- 187. Siebler M, Hennerici MG, Schneider D, von Reutern GM, Seitz RJ, Röther J, Witte OW, Hamann G, Junghans U, Villringer A, Fiebach JB. Safety of Tirofiban in acute Ischemic Stroke: the SaTIS trial. *Stroke*. 2011;42:2388–2392. doi: 10.1161/STROKEAHA.110.599662.
- 188. Pancioli AM, Broderick J, Brott T, Tomsick T, Khoury J, Bean J, del Zoppo G, Kleindorfer D, Woo D, Khatri P, Castaldo J, Frey J, Gebel J Jr, Kasner S, Kidwell C, Kwiatkowski T, Libman R, Mackenzie R, Scott P, Starkman S, Thurman RJ; for the CLEAR Trial Investigators. The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial. *Stroke*. 2008;39:3268–3276. doi: 10.1161/STROKEAHA.108.517656.
- 189. Adeoye O, Sucharew H, Khoury J, Tomsick T, Khatri P, Palesch Y, Schmit PA, Pancioli AM, Broderick JP; for the CLEAR-ER, IMS III, and ALIAS Part 2 Investigators. Recombinant tissue-type plasminogen activator plus eptifibatide versus recombinant tissue-type plasminogen activator alone in acute ischemic stroke: propensity score-matched post hoc analysis. *Stroke*. 2015;46:461–464. doi: 10.1161/STROKEAHA.114.006743.
- 190. Adeoye O, Sucharew H, Khoury J, Vagal A, Schmit PA, Ewing I, Levine SR, Demel S, Eckerle B, Katz B, Kleindorfer D, Stettler B, Woo D, Khatri P, Broderick JP, Pancioli AM. Combined approach to lysis utilizing eptifibatide and recombinant tissue-type plasminogen activator in acute ischemic stroke-full dose regimen stroke trial. *Stroke*. 2015;46:2529–2533. doi: 10.1161/STROKEAHA.115.010260.
- 191. Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I. Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD005208.
- 192. Adams HP Jr, Effron MB, Torner J, Dávalos A, Frayne J, Teal P, Leclerc J, Oemar B, Padgett L, Barnathan ES, Hacke W; for the AbESTT-II Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). *Stroke*. 2008;39:87–99. doi: 10.1161/STROKEAHA. 106.476648.
- 193. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC; CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. *N Engl J Med*. 2013;369:11–19. doi: 10.1056/NEJMoa1215340.
- 194. Wang Y, Pan Y, Zhao X, Li H, Wang D, Johnston SC, Liu L, Meng X, Wang A, Wang C, Wang Y; on behalf of the CHANCE Investigators. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) trial: one-year outcomes. *Circulation*. 2015;132:40–46. doi: 10.1161/CIRCULATIONAHA.114.014791.
- 195. Johnston SC, Easton JD, Farrant M, Barsan W, Battenhouse H, Conwit R, Dillon C, Elm J, Lindblad A, Morgenstern L, Poisson SN, Palesch Y. Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) trial: rationale and design. *Int J Stroke*. 2013;8:479–483. doi: 10.1111/ijs.12129.

- 196. Johnston SC, Amarenco P. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. *N Engl J Med.* 2016;375:1395. doi: 10.1056/NEJMc1610106.
- 197. Whiteley WN, Adams HP Jr, Bath PM, Berge E, Sandset PM, Dennis M, Murray GD, Wong KS, Sandercock PA. Targeted use of heparin, heparinoids, or low-molecular-weight heparin to improve outcome after acute ischaemic stroke: an individual patient data meta-analysis of randomised controlled trials. *Lancet Neurol.* 2013;12:539–545. doi: 10.1016/S1474-4422(13)70079-6.
- 198. Sandercock PA, Counsell C, Kane EJ. Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev. 2015:CD000024.
- 199. Yi X, Lin J, Wang C, Zhang B, Chi W. Low-molecular-weight heparin is more effective than aspirin in preventing early neurologic deterioration and improving six-month outcome. *J Stroke Cerebrovasc Dis.* 2014;23:1537–1544. doi: 10.1016/j.jstrokecerebrovasdis. 2013.12.036.
- 200. Wada T, Yasunaga H, Horiguchi H, Matsubara T, Fushimi K, Nakajima S, Yahagi N. Outcomes of argatroban treatment in patients with atherothrombotic stroke: observational nationwide study in Japan. *Stroke*. 2016;47:471–476. doi: 10.1161/STROKEAHA.115.011250.
- 201. Kate M, Gioia L, Buck B, Sivakumar L, Jeerakathil T, Shuaib A, Butcher K. Dabigatran therapy in acute ischemic stroke patients without atrial fibrillation. *Stroke*. 2015;46:2685–2687. doi: 10.1161/STROKEAHA.115.010383.
- 202. Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, Marcheselli S, Rueckert C, Pezzini A, Poli L, Padovani A, Csiba L, Szabó L, Sohn SI, Tassinari T, Abdul-Rahim AH, Michel P, Cordier M, Vanacker P, Remillard S, Alberti A, Venti M, Scoditti U, Denti L, Orlandi G, Chiti A, Gialdini G, Bovi P, Carletti M, Rigatelli A, Putaala J, Tatlisumak T, Masotti L, Lorenzini G, Tassi R, Guideri F, Martini G, Tsivgoulis G, Vadikolias K, Liantinioti C, Corea F, Del Sette M, Ageno W, De Lodovici ML, Bono G, Baldi A, D'Anna S, Sacco S, Carolei A, Tiseo C, Acciarresi M, D'Amore C, Imberti D, Zabzuni D, Doronin B, Volodina V, Consoli D, Galati F, Pieroni A, Toni D, Monaco S, Baronello MM, Barlinn K, Pallesen LP, Kepplinger J, Bodechtel U, Gerber J, Deleu D, Melikyan G, Ibrahim F, Akhtar N, Mosconi MG, Bubba V, Silvestri I, Lees KR. Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study. *Stroke*. 2015;46:2175–2182. doi: 10.1161/STROKEAHA.115.008891.
- 203. Mokin M, Kass-Hout T, Kass-Hout O, Radovic V, Siddiqui AH, Levy EI, Snyder KV. Intravenous heparin for the treatment of intraluminal thrombus in patients with acute ischemic stroke: a case series. *J Neurointerv Surg*. 2013;5:144–150. doi: 10.1136/neurintsurg-2011-010134.
- 204. Vellimana AK, Kadkhodayan Y, Rich KM, Cross DT 3rd, Moran CJ, Zazulia AR, Lee JM, Chicoine MR, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Symptomatic patients with intraluminal carotid artery thrombus: outcome with a strategy of initial anticoagulation. *J Neurosurg*. 2013;118:34–41. doi: 10.3171/2012.9.JNS12406.
- 205. Barreto AD, Alexandrov AV, Lyden P, Lee J, Martin-Schild S, Shen L, Wu TC, Sisson A, Pandurengan R, Chen Z, Rahbar MH, Balucani C, Barlinn K, Sugg RM, Garami Z, Tsivgoulis G, Gonzales NR, Savitz SI, Mikulik R, Demchuk AM, Grotta JC. The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: final results of a pilot safety study. *Stroke*. 2012;43:770–775. doi: 10.1161/STROKEAHA.111.625574.

- 206. Barreto AD, Ford GA, Shen L, Pedroza C, Tyson J, Cai C, Rahbar MH, Grotta JC; on behalf of the ARTSS-2 Investigators. Randomized, multicenter trial of ARTSS-2 (Argatroban With Recombinant Tissue Plasminogen Activator for Acute Stroke). *Stroke*. 2017;48:1608–1616. doi: 10.1161/STROKEAHA.117.016720.
- 207. Gioia LC, Kate M, Sivakumar L, Hussain D, Kalashyan H, Buck B, Bussiere M, Jeerakathil T, Shuaib A, Emery D, Butcher K. Early rivaroxaban use after cardioembolic stroke may not result in hemorrhagic transformation: a prospective magnetic resonance imaging study. *Stroke*. 2016;47:1917–1919. doi: 10.1161/STROKEAHA.116.013491.
- 208. Chang TS, Jensen MB. Haemodilution for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000103.
- 209. Ginsberg MD, Palesch YY, Hill MD, Martin RH, Moy CS, Barsan WG, Waldman BD, Tamariz D, Ryckborst KJ; ALIAS and Neurological Emergencies Treatment Trials (NETT) Investigators. High-dose albumin treatment for acute ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-controlled trial. *Lancet Neurol.* 2013;12:1049–1058. doi: 10.1016/S1474-4422(13)70223-0.
- 210. Martin RH, Yeatts SD, Hill MD, Moy CS, Ginsberg MD, Palesch YY; for the ALIAS Parts 1 and 2 and NETT Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: analysis of the combined data from parts 1 and 2. *Stroke*. 2016;47:2355–2359. doi: 10.1161/STROKEAHA.116.012825.
- 211. Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. *Ann Med.* 2010;42:576–586. doi: 10.3109/07853890.2010.532811.
- 212. Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. *Curr Cardiol Rep.* 2010;12:29–33. doi: 10.1007/s11886-009-0071-3.
- 213. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J; for the NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. *Stroke*. 2009;40:1359–1364. doi: 10.1161/STROKEAHA.109.547547.
- 214. Hacke W, Schelinger PD, Albers GW, Bornstein NM, Dahlof BS, Kasner SE, Howard G, Shuaib A, Richieri SP, Dilly S, Zivin J. Transcranial laser therapy (TLT) for acute ischemic stroke: results of NEST 3, a pivotal phase III randomized clinical trial (RCT). *Cerebrovasc Dis.* 2013;35:191.
- 215. Stead LG, Gilmore RM, Vedula KC, Weaver AL, Decker WW, Brown RD Jr. Impact of acute blood pressure variability on ischemic stroke outcome. *Neurology*. 2006;66:1878–1881. doi: 10.1212/01.wnl.0000219628.78513.b5.
- 216. Kaste M, Fogelholm R, Erilä T, Palomäki H, Murros K, Rissanen A, Sarna S. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke. *Stroke*. 1994;25:1348–1353.
- 217. Wahlgren NG, MacMahon DG, De Keyser J, Indredavik B, Ryman T. The Intravenous Nimodipine West European Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke. *Cerebrovasc Dis.* 1994;4:204–210.
- 218. Horn J, de Haan RJ, Vermeulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. *Stroke*. 2001;32:461–465.

- 219. Schrader J, Lüders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhäupl K, Diener HC, Dominiak P; on behalf of the Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors. *Stroke*. 2003;34:1699–1703. doi: 10.1161/01.STR.0000075777.18006.89.
- 220. Eveson DJ, Robinson TG, Potter JF. Lisinopril for the treatment of hypertension within the first 24 hours of acute ischemic stroke and follow-up. *Am J Hypertens*. 2007;20:270–277. doi: 10.1016/j.amjhyper.2006.08.005.
- 221. Bath PM, Martin RH, Palesch Y, Cotton D, Yusuf S, Sacco R, Diener HC, Toni D, Estol C, Roberts R; for the PRoFESS Study Group. Effect of telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke: a PRoFESS subgroup analysis. *Stroke*. 2009;40:3541–3546. doi: 10.1161/STROKEAHA.109.555623.
- 222. Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, Jagger C. Controlling Hypertension and Hypotension Immediately Post-Stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial. *Lancet Neurol.* 2009;8:48–56. doi: 10.1016/S1474-4422(08)70263-1.
- 223. Robinson TG, Potter JF, Ford GA, Bulpitt CJ, Chernova J, Jagger C, James MA, Knight J, Markus HS, Mistri AK, Poulter NR; COSSACS Investigators. Effects of antihypertensive treatment after acute stroke in the Continue or Stop Post-Stroke Antihypertensives Collaborative Study (COSSACS): a prospective, randomised, open, blinded-endpoint trial. *Lancet Neurol.* 2010;9:767–775. doi: 10.1016/S1474-4422(10)70163-0.
- 224. Sandset EC, Bath PM, Boysen G, Jatuzis D, Kõrv J, Lüders S, Murray GD, Richter PS, Roine RO, Terént A, Thijs V, Berge E; SCAST Study Group. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. *Lancet*. 2011;377:741–750. doi: 10.1016/S0140-6736(11)60104-9.
- 225. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, Tong W, Liu C, Xu T, Ju Z, Peng Y, Peng H, Li Q, Geng D, Zhang J, Li D, Zhang F, Guo L, Sun Y, Wang X, Cui Y, Li Y, Ma D, Yang G, Gao Y, Yuan X, Bazzano LA, Chen J; CATIS Investigators. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. *JAMA*. 2014;311:479–489. doi: 10.1001/jama.2013.282543.
- 226. Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev. 2014:CD000039.
- 227. Oh MS, Yu KH, Hong KS, Kang DW, Park JM, Bae HJ, Koo J, Lee J, Lee BC; Valsartan Efficacy oN modesT blood pressUre REduction in acute ischemic stroke (VENTURE) Study Group. Modest blood pressure reduction with valsartan in acute ischemic stroke: a prospective, randomized, open-label, blinded-end-point trial. *Int J Stroke*. 2015;10:745–751. doi: 10.1111/ijs.12446.
- 228. Enos Trial Investigators, Bath PM, Woodhouse L, Scutt P, Krishnan K, Wardlaw JM, Bereczki D, Sprigg N, Berge E, Beridze M, Caso V, Chen C, Christensen H, Collins R, El Etribi A, Laska AC, Lees KR, Ozturk S, Phillips S, Pocock S, de Silva HA, Szatmari S, Utton S. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. *Lancet*. 2015;385:617–28.
- 229. Lee M, Ovbiagele B, Hong KS, Wu YL, Lee JE, Rao NM, Feng W, Saver JL. Effect of blood pressure lowering in early ischemic stroke: meta-analysis. *Stroke*. 2015;46:1883–1889. doi: 10.1161/STROKEAHA.115.009552.

- 230. Woodhouse L, Scutt P, Krishnan K, Berge E, Gommans J, Ntaios G, Wardlaw J, Sprigg N, Bath PM; on behalf of the ENOS Investigators. Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke: subgroup analysis of the Efficacy of Nitric Oxide in Stroke (ENOS) Trial. *Stroke*. 2015;46:3194–3201. doi: 10.1161/STROKEAHA. 115.009647.
- 231. Rai N, Prasad K, Bhatia R, Vibha D, Singh MB, Rai VK, Kumar A. Development and implementation of acute stroke care pathway in a tertiary care hospital in India: a cluster-randomized study. *Neurol India*. 2016;64(suppl):S39–S45. doi: 10.4103/0028-3886.178038.
- 232. Middleton S, McElduff P, Ward J, Grimshaw JM, Dale S, D'Este C, Drury P, Griffiths R, Cheung NW, Quinn C, Evans M, Cadilhac D, Levi C; QASC Trialists Group. Implementation of evidence-based treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): a cluster randomised controlled trial. *Lancet*. 2011;378:1699–1706. doi: 10.1016/S0140-6736(11)61485-2.
- 233. Miles A, Zeng IS, McLauchlan H, Huckabee ML. Cough reflex testing in dysphagia following stroke: a randomized controlled trial. *J Clin Med Res.* 2013;5:222–233. doi: 10.4021/jocmr1340w.
- 234. Joundi RA, Martino R, Saposnik G, Giannakeas V, Fang J, Kapral MK. Predictors and outcomes of dysphagia screening after acute ischemic stroke. *Stroke*. 2017;48:900–906. doi: 10.1161/STROKEAHA.116.015332.
- 235. Dennis M, Lewis S, Cranswick G, Forbes J; FOOD Trial Collaboration. FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke. *Health Technol Assess.* 2006;10:iii–iv, ix.
- 236. Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke. *Cochrane Database Syst Rev.* 2012;10:CD000323. doi: 10.1002/14651858.CD000323.pub2.
- 237. Sørensen RT, Rasmussen RS, Overgaard K, Lerche A, Johansen AM, Lindhardt T. Dysphagia screening and intensified oral hygiene reduce pneumonia after stroke. *J Neurosci Nurs*. 2013;45:139–146. doi: 10.1097/JNN.0b013e31828a412c.
- 238. Brady M, Furlanetto D, Hunter RV, Lewis S, Milne V. Staff-led interventions for improving oral hygiene in patients following stroke. *Cochrane Database Syst Rev.* 2006:CD003864.
- 239. Wagner C, Marchina S, Deveau JA, Frayne C, Sulmonte K, Kumar S. Risk of stroke-associated pneumonia and oral hygiene. *Cerebrovasc Dis.* 2016;41:35–39. doi: 10.1159/000440733.
- 240. Dennis M, Caso V, Kappelle LJ, Pavlovic A, Sandercock P. European Stroke Organisation (ESO) guidelines for prophylaxis for venous thromboembolism in immobile patients with acute ischaemic stroke. *Eur Stroke J.* 2016;1:6–19.
- 241. Meader N, Moe-Byrne T, Llewellyn A, Mitchell AJ. Screening for post-stroke major depression: a meta-analysis of diagnostic validity studies. *J Neurol Neurosurg Psychiatry*. 2014;85:198–206. doi: 10.1136/jnnp-2012-304194.
- 242. Towfighi A, Ovbiagele B, El Husseini N, Hackett ML, Jorge RE, Kissela BM, Mitchell PH, Skolarus LE, Whooley MA, Williams LS; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2017;48:e30–e43. doi: 10.1161/STR.000000000000113.

- 243. AVERT Trial Collaboration Group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. *Lancet*. 2015;386:46–55.
- 244. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution's experience. *Neurosurgery*. 2003;53:1061–1605.
- 245. Agarwalla PK, Stapleton CJ, Ogilvy CS. Craniectomy in acute ischemic stroke. *Neurosurgery*. 2014;74(suppl 1):S151–S162. doi: 10.1227/NEU.000000000000226.
- 246. Mostofi K. Neurosurgical management of massive cerebellar infarct outcome in 53 patients. *Surg Neurol Int.* 2013;4:28. doi: 10.4103/2152-7806.107906.
- 247. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W; DECIMAL, DESTINY, and HAMLET Investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. *Lancet Neurol*. 2007;6:215–222. doi: 10.1016/S1474-4422(07)70036-4.
- 248. Maciel CB, Sheth KN. Malignant MCA stroke: an update on surgical decompression and future directions. *Curr Atheroscler Rep.* 2015;17:40. doi: 10.1007/s11883-015-0519-4.
- 249. Yang MH, Lin HY, Fu J, Roodrajeetsing G, Shi SL, Xiao SW. Decompressive hemicraniectomy in patients with malignant middle cerebral artery infarction: a systematic review and meta-analysis. *Surgeon.* 2015;13:230–240. doi: 10.1016/j.surge.2014.12.002.
- 250. Alexander P, Heels-Ansdell D, Siemieniuk R, Bhatnagar N, Chang Y, Fei Y, Zhang Y, McLeod S, Prasad K, Guyatt G. Hemicraniectomy versus medical treatment with large MCA infarct: a review and meta-analysis. *BMJ Open*. 2016;6:e014390. doi: 10.1136/bmjopen-2016-014390.
- 251. Sundseth J, Sundseth A, Jacobsen EA, Pripp AH, Sorteberg W, Altmann M, Lindegaard KF, Berg-Johnsen J, Thommessen B. Predictors of early in-hospital death after decompressive craniectomy in swollen middle cerebral artery infarction. *Acta Neurochir (Wien)*. 2017;159:301–306. doi: 10.1007/s00701-016-3049-0.
- 252. Suyama K, Horie N, Hayashi K, Nagata I. Nationwide survey of decompressive hemicraniectomy for malignant middle cerebral artery infarction in Japan. *World Neurosurg.* 2014;82:1158–1163. doi: 10.1016/j.wneu.2014.07.015.
- 253. Yu JW, Choi JH, Kim DH, Cha JK, Huh JT. Outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 70 years old. *J Cerebrovasc Endovasc Neurosurg*. 2012;14:65–74. doi: 10.7461/jcen.2012.14.2.65.
- 254. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, Gondan M, Schiller P, Limprecht R, Luntz S, Schneider H, Pinzer T, Hobohm C, Meixensberger J, Hacke W; DESTINY II Investigators. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. *N Engl J Med.* 2014;370:1091–1100. doi: 10.1056/NEJMoa1311367.
- 255. Zhao J, Su YY, Zhang YZ, Zhao R, Wang L, Gao R, Chen W, Gao D. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: a randomized controlled trial enrolling patients up to 80 years old. *Neurocrit Care*. 2012;17:161–171. doi: 10.1007/s12028-012-9703-3.

- 256. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. *Crit Care Med.* 2010;38:1348–1359. doi: 10.1097/CCM.0b013e3181d8cf2b.
- 257. Wan YH, Nie C, Wang HL, Huang CY. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: a meta-analysis. *J Stroke Cerebrovasc Dis.* 2014;23:2736–2747. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.017.
- 258. Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH. Significance of acute multiple brain infarction on diffusion-weighted imaging. *Stroke*. 2000;31:688–694.
- 259. Kang DW, Chalela JA, Ezzeddine MA, Warach S. Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. *Arch Neurol.* 2003;60:1730–1734. doi: 10.1001/archneur.60.12.1730.
- 260. Cho AH, Kim JS, Jeon SB, Kwon SU, Lee DH, Kang DW. Mechanism of multiple infarcts in multiple cerebral circulations on diffusion-weighted imaging. *J Neurol.* 2007;254:924–930. doi: 10.1007/s00415-006-0397-3.
- 261. Braemswig TB, Usnich T, Albach FN, Brunecker P, Grittner U, Scheitz JF, Fiebach JB, Nolte CH. Early new diffusion-weighted imaging lesions appear more often in stroke patients with a multiple territory lesion pattern. *Stroke*. 2013;44:2200–2204. doi: 10.1161/STROKEAHA.111.000810.
- 262. Depuydt S, Sarov M, Vandendries C, Guedj T, Cauquil C, Assayag P, Lambotte O, Ducreux D, Denier C. Significance of acute multiple infarcts in multiple cerebral circulations on initial diffusion weighted imaging in stroke patients. *J Neurol Sci.* 2014;337:151–155. doi: 10.1016/j. jns.2013.11.039.
- 263. Rabinstein AA, Fugate JE, Mandrekar J, Burns JD, Seet RC, Dupont SA, Kauffman TJ, Asirvatham SJ, Friedman PA. Paroxysmal atrial fibrillation in cryptogenic stroke: a case-control study. *J Stroke Cerebrovasc Dis.* 2013;22:1405–1411. doi: 10.1016/j.jstrokecerebrovasdis. 2013.05.013.
- 264. Bernstein RA, Di Lazzaro V, Rymer MM, Passman RS, Brachmann J, Morillo CA, Sanna T, Thijs V, Rogers T, Liu S, Ziegler PD, Diener HC. Infarct topography and detection of atrial fibrillation in cryptogenic stroke: results from CRYSTAL AF. *Cerebrovasc Dis.* 2015;40:91–96. doi: 10.1159/000437018.
- 265. Favilla CG, Ingala E, Jara J, Fessler E, Cucchiara B, Messé SR, Mullen MT, Prasad A, Siegler J, Hutchinson MD, Kasner SE. Predictors of finding occult atrial fibrillation after cryptogenic stroke. *Stroke*. 2015;46:1210–1215. doi: 10.1161/STROKEAHA.114.007763.
- 266. Sudacevschi V, Bertrand C, Chadenat ML, Tarnaud C, Pico F. Predictors of occult atrial fibrillation in one hundred seventy-one patients with cryptogenic transient ischemic attack and minor stroke. *J Stroke Cerebrovasc Dis.* 2016;25:2673–2677. doi: 10.1016/j. jstrokecerebrovasdis.2016.07.014.
- 267. Novotny V, Thomassen L, Waje-Andreassen U, Naess H. Acute cerebral infarcts in multiple arterial territories associated with cardioembolism. *Acta Neurol Scand.* 2017;135:346–351. doi: 10.1111/ane.12606.
- 268. Ois A, Cuadrado-Godia E, Rodríguez-Campello A, Jimenez-Conde J, Roquer J. High risk of early neurological recurrence in symptomatic carotid stenosis. *Stroke*. 2009;40:2727–2731. doi: 10.1161/STROKEAHA.109.548032.

- 269. De Rango P, Brown MM, Chaturvedi S, Howard VJ, Jovin T, Mazya MV, Paciaroni M, Manzone A, Farchioni L, Caso V. Summary of evidence on early carotid intervention for recently symptomatic stenosis based on meta-analysis of current risks. *Stroke*. 2015;46:3423–3436. doi: 10.1161/STROKEAHA.115.010764.
- 270. Marnane M, Ni Chroinin D, Callaly E, Sheehan OC, Merwick A, Hannon N, Horgan G, Kyne L, Moroney J, McCormack PM, Dolan E, Duggan J, Williams D, Crispino-O'Connell G, Kelly PJ. Stroke recurrence within the time window recommended for carotid endarterectomy. *Neurology*. 2011;77:738–743. doi: 10.1212/WNL.0b013e31822b00cf.
- 271. Johansson EP, Arnerlöv C, Wester P. Risk of recurrent stroke before carotid endarterectomy: the ANSYSCAP study. *Int J Stroke*. 2013;8:220–227. doi: 10.1111/j.1747-4949.2012.00790.x.
- 272. Strömberg S, Nordanstig A, Bentzel T, Österberg K, Bergström GM. Risk of early recurrent stroke in symptomatic carotid stenosis. *Eur J Vasc Endovasc Surg.* 2015;49:137–144. doi: 10.1016/j.ejvs.2014.11.004.
- 273. Kazandjian C, Kretz B, Lemogne B, Aboa Eboulé C, Béjot Y, Steinmetz E. Influence of the type of cerebral infarct and timing of intervention in the early outcomes after carotid endarterectomy for symptomatic stenosis. *J Vasc Surg.* 2016;63:1256–1261. doi: 10.1016/j.jvs.2015.10.097.
- 274. Azzini C, Gentile M, De Vito A, Traina L, Sette E, Fainardi E, Mascoli F, Casetta I. Very early carotid endarterectomy after intravenous thrombolysis. *Eur J Vasc Endovasc Surg.* 2016;51:482–486. doi: 10.1016/j.ejvs.2015.11.006.
- 275. Adachi K, Sadato A, Hayakawa M, Maeda S, Hirose Y. Acute carotid artery stenting in symptomatic high-grade cervical carotid artery stenosis. *Neurosurg Rev.* 2017;40:45–51. doi: 10.1007/s10143-016-0737-4.
- 276. Vasconcelos V, Cassola N, da Silva EM, Baptista-Silva JC. Immediate versus delayed treatment for recently symptomatic carotid artery stenosis. *Cochrane Database Syst Rev.* 2016;9:CD011401. doi: 10.1002/14651858.CD011401.pub2.
- 277. Ferguson GG, Eliasziw M, Barr HW, Clagett GP, Barnes RW, Wallace MC, Taylor DW, Haynes RB, Finan JW, Hachinski VC, Barnett HJ. The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients. Stroke. 1999;30:1751–1758.
- 278. Turan TN, Maidan L, Cotsonis G, Lynn MJ, Romano JG, Levine SR, Chimowitz MI; for the Warfarin-Aspirin Symptomatic Intracranial Disease Investigators. Failure of antithrombotic therapy and risk of stroke in patients with symptomatic intracranial stenosis. *Stroke*. 2009;40:505–509. doi: 10.1161/STROKEAHA.108.528281.
- 279. Jung JM, Kang DW, Yu KH, Koo JS, Lee JH, Park JM, Hong KS, Cho YJ, Kim JS, Kwon SU; on behalf of the TOSS-2 Investigators. Predictors of recurrent stroke in patients with symptomatic intracranial arterial stenosis. *Stroke*. 2012;43:2785–2787. doi: 10.1161/STROKEAHA.112.659185.
- 280. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, Levine SR, Chaturvedi S, Kasner SE, Benesch CG, Sila CA, Jovin TG, Romano JG; Warfarin-Aspirin Symptomatic Intracranial Disease Trial Investigators. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. *N Engl J Med.* 2005;352:1305–1316. doi: 10.1056/NEJMoa043033.
- 281. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, Janis LS, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride GL Jr, Torbey MT,

- Zaidat OO, Rumboldt Z, Cloft HJ; SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. *N Engl J Med.* 2011;365:993–1003. doi: 10.1056/NEJMoa1105335.
- 282. Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride GL Jr, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. *Lancet*. 2014;383:333–341. doi: 10.1016/S0140-6736(13)62038-3.
- 283. Lutsep HL, Barnwell SL, Larsen DT, Lynn MJ, Hong M, Turan TN, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Investigators. Outcome in patients previously on antithrombotic therapy in the SAMMPRIS trial: subgroup analysis. *Stroke*. 2015;46:775–779. doi: 10.1161/STROKEAHA.114.007752.
- 284. Chaturvedi S, Turan TN, Lynn MJ, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Trial Investigators. Do patient characteristics explain the differences in outcome between medically treated patients in SAMMPRIS and WASID? *Stroke*. 2015;46:2562–2567. doi: 10.1161/STROKEAHA.115.009656.
- 285. Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, Smith HH, Nichols F, Rogg J, Cloft HJ, Wechsler L, Saver J, Levine SR, Tegeler C, Adams R, Sloan M; Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) Trial Investigators. The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. *Neurology*. 2007;68:2099–2106. doi: 10.1212/01.wnl.0000261488.05906.c1.
- 286. Liebeskind DS, Kosinski AS, Saver JL, Feldmann E; SONIA Investigators. Computed tomography angiography in the Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) study. *Interv Neurol*. 2014;2:153–159. doi: 10.1159/000360952.
- 287. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke: EAFT (European Atrial Fibrillation Trial) Study Group. *Lancet*. 1993;342:1255–62.
- 288. Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. *Lancet Neurol*. 2015;14:377–387. doi: 10.1016/S1474-4422(15)70027-X.
- 289. Higgins P, MacFarlane PW, Dawson J, McInnes GT, Langhorne P, Lees KR. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial. *Stroke*. 2013;44:2525–2531. doi: 10.1161/STROKEAHA.113.001927.
- 290. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY, Ip J, Holcomb R, Akar JG, Halperin JL; IMPACT Investigators. Randomized trial of atrial arrhythmia monitoring to guide anticoagula- tion in patients with implanted defibrillator and cardiac resynchronization devices. *Eur Heart J.* 2015;36:1660–1668. doi: 10.1093/eurheartj/ehv115.
- 291. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F, Lindborg K, Brachmann J; CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. *N Engl J Med.* 2014;370:2478–2486. doi: 10.1056/NEJMoa1313600.

- 292. Brachmann J, Morillo CA, Sanna T, Di Lazzaro V, Diener HC, Bernstein RA, Rymer M, Ziegler PD, Liu S, Passman RS. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the Cryptogenic Stroke and Underlying Atrial Fibrillation Trial. *Circ Arrhythm Electrophysiol.* 2016;9:e003333. doi: 10.1161/CIRCEP.115.003333.
- 293. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, Vaid H, O'Donnell M, Laupacis A, Côté R, Sharma M, Blakely JA, Shuaib A, Hachinski V, Coutts SB, Sahlas DJ, Teal P, Yip S, Spence JD, Buck B, Verreault S, Casaubon LK, Penn A, Selchen D, Jin A, Howse D, Mehdiratta M, Boyle K, Aviv R, Kapral MK, Mamdani M; EMBRACE Investigators and Coordinators. Atrial fibrillation in patients with cryptogenic stroke. *N Engl J Med.* 2014;370:2467–2477. doi: 10.1056/NEJMoa1311376.
- 294. Wachter R, Gröschel K, Gelbrich G, Hamann GF, Kermer P, Liman J, Seegers J, Wasser K, Schulte A, Jürries F, Messerschmid A, Behnke N, Gröschel S, Uphaus T, Grings A, Ibis T, Klimpe S, Wagner-Heck M, Arnold M, Protsenko E, Heuschmann PU, Conen D, Weber-Krüger M; Find-AFRANDOMISED Investigators and Coordinators. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AFRANDOMISED): an open-label randomised controlled trial. *Lancet Neurol.* 2017;16:282–290. doi: 10.1016/S1474-4422(17)30002-9.
- 295. Higgins P, Dawson J, MacFarlane PW, McArthur K, Langhorne P, Lees KR. Predictive value of newly detected atrial fibrillation paroxysms in patients with acute ischemic stroke, for atrial fibrillation after 90 days. *Stroke*. 2014;45:2134–2136. doi: 10.1161/STROKEAHA. 114.005405.
- 296. Meenan RT, Saha S, Chou R, Swarztrauber K, Krages KP, O'Keefee-Rosetti M, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Effectiveness and cost-effectiveness of echocardiography and carotid imaging in the management of stroke. *Evid Rep Technol Assess* (Summ). 2002:1–10.
- 297. McNamara RL, Lima JA, Whelton PK, Powe NR. Echocardiographic identification of cardiovascular sources of emboli to guide clinical management of stroke: a cost-effectiveness analysis. *Ann Intern Med.* 1997;127:775–787.
- 298. Meenan RT, Saha S, Chou R, Swarztrauber K, Pyle Krages K, O'Keeffe-Rosetti MC, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Cost-effectiveness of echocardiography to identify intracardiac thrombus among patients with first stroke or transient ischemic attack. *Med Decis Making*. 2007;27:161–177. doi: 10.1177/0272989X06297388.
- 299. Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, Settergren M, Sjöstrand C, Roine RO, Hildick-Smith D, Spence JD, Thomassen L; Gore REDUCE Clinical Study Investigators. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. *N Engl J Med.* 2017;377:1033–1042. doi: 10.1056/NEJMoa1707404.
- 300. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, Arquizan C, Béjot Y, Vuillier F, Detante O, Guidoux C, Canaple S, Vaduva C, Dequatre-Ponchelle N, Sibon I, Garnier P, Ferrier A, Timsit S, Robinet-Borgomano E, Sablot D, Lacour JC, Zuber M, Favrole P, Pinel JF, Apoil M, Reiner P, Lefebvre C, Guérin P, Piot C, Rossi R, Dubois-Randé JL, Eicher JC, Meneveau N, Lusson JR, Bertrand B, Schleich JM, Godart F, Thambo JB, Leborgne L, Michel P, Pierard L, Turc G, Barthelet M, Charles-Nelson A, Weimar C, Moulin T, Juliard JM, Chatellier G; CLOSE Investigators. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. *N Engl J Med*. 2017;377:1011–1021. doi: 10.1056/NEJMoa1705915.

- 301. Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. *N Engl J Med.* 2013;368:1092–1100. doi: 10.1056/NEJMoa1301440.
- 302. Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. *N Engl J Med.* 2017;377:1022–1032. doi: 10.1056/NEJMoa1610057.
- 303. Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, Andersen G, Ibrahim R, Schuler G, Walton AS, Wahl A, Windecker S, Jüni P; PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptogenic embolism. *N Engl J Med*. 2013;368:1083–1091. doi: 10.1056/NEJMoa1211716.
- 304. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, Felberg R, Herrmann H, Kar S, Landzberg M, Raizner A, Wechsler L; CLOSURE I Investigators. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. *N Engl J Med.* 2012;366:991–999. doi: 10.1056/NEJMoa1009639.
- 305. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Ž, Riccardi G, Taskinen MR, Tokgozoglu L, Verschuren WM, Vlachopoulos C, Wood DA, Zamorano JL. 2016 ESC/EAS guidelines for the management of dyslipidaemias. *Eur Heart J.* 2016;37:2999–3058. doi: 10.1093/eurheartj/ehw272.
- 306. NICE (National Institute for Health and Care Excellence). Cardiovascular disease: risk assessment and reduction, including lipid modification. 2014. https://www.nice.org.uk/guidance/cg181. Accessed January 3, 2018.
- 307. Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GB, McPherson R, Francis GA, Poirier P, Lau DC, Grover S, Genest J Jr, Carpentier AC, Dufour R, Gupta M, Ward R, Leiter LA, Lonn E, Ng DS, Pearson GJ, Yates GM, Stone JA, Ur E. 2012 Update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. *Can J Cardiol*. 2013;29:151–167. doi: 10.1016/j.cjca.2012.11.032.
- 308. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. *N Engl J Med.* 2017;376:1713–1722. doi: 10.1056/NEJMoa1615664.
- 309. Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med. 2017;377:1177–1187. doi: 10.1056/NEJMra1700365.
- 310. Brown DL, Chervin RD, Hickenbottom SL, Langa KM, Morgenstern LB. Screening for obstructive sleep apnea in stroke patients: a cost-effectiveness analysis. *Stroke*. 2005;36:1291–1293. doi: 10.1161/01. STR.0000166055.52742.2b.
- 311. Pack AI, Pien GW. Update on sleep and its disorders. *Annu Rev Med.* 2011;62:447–460. doi: 10.1146/annurev-med-050409-104056.
- 312. Medeiros CA, de Bruin VM, Andrade GM, Coutinho WM, de Castro-Silva C, de Bruin PF. Obstructive sleep apnea and biomarkers of inflam- mation in ischemic stroke. *Acta Neurol Scand.* 2012;126:17–22. doi: 10.1111/j.1600-0404.2011.01589.x.
- 313. Camilo MR, Sander HH, Eckeli AL, Fernandes RM, Dos Santos-Pontelli TE, Leite JP, Pontes-Neto OM. SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea. *Sleep Med.* 2014;15:1021–1024. doi: 10.1016/j.sleep.2014.03.026.

- 314. Stahl SM, Yaggi HK, Taylor S, Qin L, Ivan CS, Austin C, Ferguson J, Radulescu R, Tobias L, Sico J, Vaz Fragoso CA, Williams LS, Lampert R, Miech EJ, Matthias MS, Kapoor J, Bravata DM. Infarct location and sleep apnea: evaluating the potential association in acute ischemic stroke. *Sleep Med.* 2015;16:1198–1203. doi: 10.1016/j.sleep.2015.07.003.
- 315. Parra O, Sánchez-Armengol A, Bonnin M, Arboix A, Campos-Rodríguez F, Pérez-Ronchel J, Durán-Cantolla J, de la Torre G, González Marcos JR, de la Peña M, Carmen Jiménez M, Masa F, Casado I, Luz Alonso M, Macarrón JL. Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial. *Eur Respir J*. 2011;37:1128–1136. doi: 10.1183/09031936.00034410.
- 316. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, Chen G, Du B, McArdle N, Mukherjee S, Tripathi M, Billot L, Li Q, Lorenzi-Filho G, Barbe F, Redline S, Wang J, Arima H, Neal B, White DP, Grunstein RR, Zhong N, Anderson CS; SAVE Investigators and Coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea. *N Engl J Med*. 2016;375:919–931. doi: 10.1056/NEJMoa1606599.
- 317. Côté R, Zhang Y, Hart RG, McClure LA, Anderson DC, Talbert RL, Benavente OR. ASA failure: does the combination ASA/clopidogrel confer better long-term vascular protection? *Neurology*. 2014;82:382–389. doi: 10.1212/WNL.00000000000000006.
- 318. Lee M, Saver JL, Hong KS, Rao NM, Wu YL, Ovbiagele B. Antiplatelet regimen for patients with breakthrough strokes while on aspirin: a systematic review and meta-analysis. *Stroke*. 2017;48:2610–2613. doi: 10.1161/STROKEAHA.117.017895.
- 319. Mohr JP. Evidence of aspirin and warfarin failure in the WARSS Study. Paper presented at: 27th International Stroke Conference; 2002; San Antonio, TX.
- 320. John S, Katzan I. Recurrent stroke while on antiplatelet therapy. Neurol Clin. 2015;33:475–489. doi: 10.1016/j.ncl.2014.12.007.
- 321. Kasner SE, Lynn MJ, Chimowitz MI, Frankel MR, Howlett-Smith H, Hertzberg VS, Chaturvedi S, Levine SR, Stern BJ, Benesch CG, Jovin TG, Sila CA, Romano JG; Warfarin Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators. Warfarin vs aspirin for symptomatic intracranial stenosis: subgroup analyses from WASID. *Neurology*. 2006;67:1275–1278. doi: 10.1212/01.wnl.0000238506.76873.2f.
- 322. Kim JT, Heo SH, Park MS, Chang J, Choi KH, Cho KH. Use of antithrombotics after hemorrhagic transformation in acute ischemic stroke. *PLoS One.* 2014;9:e89798. doi: 10.1371/journal.pone.0089798.
- 323. England TJ, Bath PM, Sare GM, Geeganage C, Moulin T, O'Neill D, Woimant F, Christensen H, De Deyn P, Leys D, Ringelstein EB; on behalf of the TAIST Investigators. Asymptomatic hemorrhagic transformation of infarction and its relationship with functional outcome and stroke subtype: assessment from the Tinzaparin in Acute Ischaemic Stroke Trial. *Stroke*. 2010;41:2834–2839. doi: 10.1161/STROKEAHA.109.573063.
- 324. CADISS Trial Investigators, Markus HS, Hayter E, Levi C, Feldman A, Venables G, Norris J. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial. *Lancet Neurol.* 2015;14:361–367.
- 325. Larsson SC, King A, Madigan J, Levi C, Norris JW, Markus HS. Prognosis of carotid dissecting aneurysms: results from CADISS and a systematic review. *Neurology*. 2017;88:646–652. doi: 10.1212/WNL.000000000003617.

- 326. Ahlhelm F, Benz RM, Ulmer S, Lyrer P, Stippich C, Engelter S. Endovascular treatment of cervical artery dissection: ten case reports and review of the literature. *Interv Neurol*. 2013;1:143–150. doi: 10.1159/000351687.
- 327. Sanossian N, Saver JL, Liebeskind DS, Kim D, Razinia T, Ovbiagele B. Achieving target cholesterol goals after stroke: is in-hospital statin initiation the key? *Arch Neurol.* 2006;63:1081–1083. doi: 10.1001/archneur.63.8.1081.
- 328. Hong KS, Lee JS. Statins in acute ischemic stroke: a systematic review. J Stroke. 2015;17:282–301. doi: 10.5853/jos.2015.17.3.282.
- 329. Kennedy J, Hill MD, Ryckborst KJ, Eliasziw M, Demchuk AM, Buchan AM; FASTER Investigators. Fast assessment of stroke and transient ischaemic attack to prevent early recurrence (FASTER): a randomised controlled pilot trial. *Lancet Neurol.* 2007;6:961–969. doi: 10.1016/S1474-4422(07)70250-8.
- 330. Yoshimura S, Uchida K, Daimon T, Takashima R, Kimura K, Morimoto T; on behalf of the ASSORT Trial Investigator. Randomized controlled trial of early versus delayed statin therapy in patients with acute ischemic stroke: ASSORT trial (Administration of Statin on Acute Ischemic Stroke Patient). *Stroke*. 2017;48:3057–3063. doi: 10.1161/STROKEAHA.117.017623.
- 331. Rigotti NA, Clair C, Munafo MR, Stead LF. Interventions for smoking cessation in hospitalised patients. *Cochrane Database Syst Rev.* 2012:CD001837.
- 332. Stead LF, Koilpillai P, Fanshawe TR, Lancaster T. Combined pharmacotherapy and behavioural interventions for smoking cessation. *Cochrane Database Syst Rev.* 2016;3:CD008286. doi: 10.1002/14651858.CD008286.pub3.
- 333. Stead LF, Koilpillai P, Lancaster T. Additional behavioural support as an adjunct to pharmacotherapy for smoking cessation. *Cochrane Database Syst Rev.* 2015:CD009670.
- 334. Eisenberg MJ, Windle SB, Roy N, Old W, Grondin FR, Bata I, Iskander A, Lauzon C, Srivastava N, Clarke A, Cassavar D, Dion D, Haught H, Mehta SR, Baril JF, Lambert C, Madan M, Abramson BL, Dehghani P; for the EVITA Investigators. Varenicline for smoking cessation in hospitalized patients with acute coronary syndrome. *Circulation*. 2016;133:21–30. doi: 10.1161/CIRCULATIONAHA.115.019634.
- 335. Lee MJ, Park E, Kim HC, Lee HS, Cha MJ, Kim YD, Heo JH, Nam HS. Timely interventions can increase smoking cessation rate in men with ischemic stroke. *J Korean Acad Nurs*. 2016;46:610–617. doi: 10.4040/jkan.2016.46.4.610.
- 336. Schwartz J, Dreyer RP, Murugiah K, Ranasinghe I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States. *Prehosp Emerg Care*. 2016;20:560–565. doi: 10.3109/10903127.2016.1139219.
- 337. Morgenstern LB, Gonzales NR, Maddox KE, Brown DL, Karim AP, Espinosa N, Moyé LA, Pary JK, Grotta JC, Lisabeth LD, Conley KM. A randomized, controlled trial to teach middle school children to recognize stroke and call 911: the Kids Identifying and Defeating Stroke Project. *Stroke*. 2007;38:2972–2978. doi: 10.1161/STROKEAHA.107.490078.
- 338. Carrera D, Campbell BC, Cortés J, Gorchs M, Querol M, Jiménez X, Millán M, Dávalos A, Pérez de la Ossa N. Predictive value of modifications of the prehospital rapid arterial occlusion evaluation scale for large vessel occlusion in patients with acute stroke. *J Stroke Cerebrovasc Dis.* 2017;26:74–77. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.032.
- 339. Kim JT, Chung PW, Starkman S, Sanossian N, Stratton SJ, Eckstein M, Pratt FD, Conwit R, Liebeskind DS, Sharma L, Restrepo L, Tenser MK, Valdes-Sueiras M, Gornbein J, Hamilton S, Saver JL; on behalf of the FAST-MAG Trial (Field Administration of Stroke Therapy—

- Magnesium) Nurse-Coordinators and Investigators. Field validation of the Los Angeles Motor Scale as a tool for paramedic assessment of stroke severity. *Stroke*. 2017;48:298–306. doi: 10.1161/STROKEAHA.116.015247.
- 340. McMullan JT, Katz B, Broderick J, Schmit P, Sucharew H, Adeoye O. Prospective prehospital evaluation of the Cincinnati Stroke Triage Assessment Tool. *Prehosp Emerg Care*. 2017:1–8.
- 341. Sauser K, Levine DA, Nickles AV, Reeves MJ. Hospital variation in thrombolysis times among patients with acute ischemic stroke: the contributions of door-to-imaging time and imaging-to-needle time. *JAMA Neurol.* 2014;71:1155–1161. doi: 10.1001/jamaneurol.2014.1528.
- 342. van Wijngaarden JD, Dirks M, Niessen LW, Huijsman R, Dippel DW. Do centres with well-developed protocols, training and infrastructure have higher rates of thrombolysis for acute ischaemic stroke? *QJM*. 2011;104:785–791. doi: 10.1093/qjmed/hcr075.
- 343. Jeng JS, Tang SC, Deng IC, Tsai LK, Yeh SJ, Yip PK. Stroke center characteristics which influence the administration of thrombolytic therapy for acute ischemic stroke: a national survey of stroke centers in Taiwan. *J Neurol Sci.* 2009;281:24–27. doi: 10.1016/j.ins.2009.03.004.
- 344. Douglas VC, Tong DC, Gillum LA, Zhao S, Brass LM, Dostal J, Johnston SC. Do the Brain Attack Coalition's criteria for stroke centers improve care for ischemic stroke? *Neurology*. 2005;64:422–427. doi: 10.1212/01.WNL.0000150903.38639.E1.
- 345. Asimos AW, Norton HJ, Price MF, Cheek WM. Therapeutic yield and outcomes of a community teaching hospital code stroke protocol. *Acad Emerg Med.* 2004;11:361–370.
- 346. Demaerschalk BM, Bobrow BJ, Raman R, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Ward MP, Richemont PC, Brazdys K, Koch TC, Miley ML, Hoffman Snyder CR, Corday DA, Meyer BC; for the STRokE DOC AZ TIME Investigators. Stroke team remote evaluation using a digital observation camera in Arizona: the initial Mayo Clinic Experience Trial. *Stroke*. 2010;41:1251–1258. doi: 10.1161/STROKEAHA.109.574509.
- 347. Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD. Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. *Lancet Neurol.* 2008;7:787–795. doi: 10.1016/S1474-4422(08)70171-6.
- 348. Rai AT, Smith MS, Boo S, Tarabishy AR, Hobbs GR, Carpenter JS. The 'pit-crew' model for improving door-to-needle times in endovascular stroke therapy: a Six-Sigma project. *J Neurointerv Surg.* 2016;8:447–452. doi: 10.1136/neurintsurg-2015-012219.
- 349. Wardlaw JM, Carpenter T, Sakka E, Mair G, Cohen G, Shuler K, Palmer JM, Innes K, Sandercock PA. Imaging perfusion deficits, arterial patency and thrombolysis safety and efficacy in acute ischaemic stroke: an observational study of the effect of advanced imaging methods in the Third International Stroke Trial (IST-3), a randomised controlled trial. *Efficacy Mech Eval.* 2014;1(3). doi: 10.3310/eme.01030.
- 350. Mocco J, Zaidat OO, von Kummer R, Yoo AJ, Gupta R, Lopes D, Frei D, Shownkeen H, Budzik R, Ajani ZA, Grossman A, Altschul D, McDougall C, Blake L, Fitzsimmons BF, Yavagal D, Terry J, Farkas J, Lee SK, Baxter B, Wiesmann M, Knauth M, Heck D, Hussain S, Chiu D, Alexander MJ, Malisch T, Kirmani J, Miskolczi L, Khatri P; THERAPY Trial Investigators. Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone. *Stroke*. 2016;47:2331–2338. doi: 10.1161/STROKEAHA.116.013372.
- 351. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, Jauch EC, Jovin TG, Yan B, Silver FL, von Kummer R, Molina CA, Demaerschalk BM, Budzik R, Clark WM, Zaidat OO, Malisch TW, Goyal M, Schonewille WJ, Mazighi M, Engelter ST, Anderson C,

- Spilker J, Carrozzella J, Ryckborst KJ, Janis LS, Martin RH, Foster LD, Tomsick TA; Interventional Management of Stroke (IMS) III Investigators. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. *N Engl J Med.* 2013;368:893–903. doi: 10.1056/NEJMoa1214300.
- 352. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, Boccardi E; SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. *N Engl J Med.* 2013;368:904–913. doi: 10.1056/NEJMoa1213701.
- 353. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, Feng L, Meyer BC, Olson S, Schwamm LH, Yoo AJ, Marshall RS, Meyers PM, Yavagal DR, Wintermark M, Guzy J, Starkman S, Saver JL; MR RESCUE Investigators. A trial of imaging selection and endovascular treatment for ischemic stroke. *N Engl J Med.* 2013;368:914–923. doi: 10.1056/NEJMoa1212793.
- 354. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS, Smith WS; TREVO 2 Trialists. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. *Lancet*. 2012;380:1231–1240. doi: 10.1016/S0140-6736(12)61299-9.
- 355. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO; SWIFT Trialists. Solitaire Flow Restoration Device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. *Lancet*. 2012;380:1241–1249. doi: 10.1016/S0140-6736(12)61384-1.
- 356. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, Miyamoto S, Sasaki M, Inoue T; for the MELT Japan Study Group. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. *Stroke*. 2007;38:2633–2639. doi: 10.1161/STROKEAHA.107.488551.
- 357. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F. Intraarterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial: Prolyse in Acute Cerebral Thromboembolism. *JAMA*. 1999;282:2003–2011.
- 358. Ali K, Warusevitane A, Lally F, Sim J, Sills S, Pountain S, Nevatte T, Allen M, Roffe C. The Stroke Oxygen Pilot Study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke: effect on key outcomes at six months. *PLoS One*. 2014;8:e59274. doi: 10.1371/journal.pone.0059274.
- 359. Singhal A, Partners SPOTRIAS Investigators. A phase IIB clinical trial of normobaric oxygen therapy (NBO) in acute ischemic stroke (AIS). *Neurology*. 2013;80(suppl):S02.001.
- 360. Roffe C, Ali K, Warusevitane A, Sills S, Pountain S, Allen M, Hodsoll J, Lally F, Jones P, Crome P. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke: effect on recovery of neurological function at one week. *PLoS One*. 2011;6:e19113. doi: 10.1371/journal.pone.0019113.
- 361. Roffe C, Sills S, Pountain SJ, Allen M. A randomized controlled trial of the effect of fixed-dose routine nocturnal oxygen supplementation on oxygen saturation in patients with acute stroke. *J Stroke Cerebrovasc Dis.* 2010;19:29–35. doi: 10.1016/j.jstrokecerebrovasdis. 2009.02.008.

- 362. Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, Buonanno FS, Gonzalez RG, Sorensen AG. A pilot study of normobaric oxygen therapy in acute ischemic stroke. *Stroke*. 2005;36:797–802. doi: 10.1161/01.STR.0000158914.66827.2e.
- 363. Rønning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. *Stroke*. 1999;30:2033–2037.
- 364. Adelman EE, Scott PA, Skolarus LE, Fox AK, Frederiksen SM, Meurer WJ. Protocol deviations before and after treatment with intravenous tissue plasminogen activator in community hospitals. *J Stroke Cerebrovasc Dis.* 2016;25:67–73. doi: 10.1016/j.jstrokecerebrovasdis. 2015.08.036.
- 365. Kodankandath TV, Shaji J, Kohn N, Arora R, Salamon E, Libman RB, Katz JM. Poor hypertension control and longer transport times are associated with worse outcome in drip-and-ship stroke patients. *J Stroke Cerebrovasc Dis.* 2016;25:1887–1890. doi: 10.1016/j. jstrokecerebrovasdis.2016.04.013.
- 366. Lyerly MJ, Albright KC, Boehme AK, Bavarsad Shahripour R, Houston JT, Rawal PV, Kapoor N, Alvi M, Sisson A, Alexandrov AW, Alexandrov AV. Safety of protocol violations in acute stroke tPA administration. *J Stroke Cerebrovasc Dis.* 2014;23:855–860. doi: 10.1016/j.jstrokecerebrovasdis.2013.07.019.
- 367. Kellert L, Rocco A, Sykora M, Hacke W, Ringleb PA. Frequency of increased blood pressure levels during systemic thrombolysis and risk of intracerebral hemorrhage. *Stroke*. 2011;42:1702–1706. doi: 10.1161/STROKEAHA.110.604744.
- 368. Karaszewski B, Thomas RG, Dennis MS, Wardlaw JM. Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome. *BMC Neurol*. 2012;12:123. doi: 10.1186/1471-2377-12-123.
- 369. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW. An early rise in body temperature is related to unfavorable outcome after stroke: data from the PAIS study. *J Neurol*. 2011;258:302–307. doi: 10.1007/s00415-010-5756-4.
- 370. Broessner G, Beer R, Lackner P, Helbok R, Fischer M, Pfausler B, Rhorer J, Küppers-Tiedt L, Schneider D, Schmutzhard E. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease: bicenter prospective, randomized trial. *Stroke*. 2009;40:e657–e665. doi: 10.1161/STROKEAHA.109.557652.
- 371. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW; PAIS Investigators. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial. *Lancet Neurol*. 2009;8:434–440. doi: 10.1016/S1474-4422(09)70051-1.
- 372. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, Belagaje SR, Thomas TT, Anderson AM, Frankel MR, Schindler KM, Gupta R. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). *J Neurointerv Surg.* 2014;6:91–95. doi: 10.1136/neurintsurg-2013-010656.
- 373. Su Y, Fan L, Zhang Y, Zhang Y, Ye H, Gao D, Chen W, Liu G. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction. *Stroke*. 2016;47:457–463. doi: 10.1161/STROKEAHA.115.009789.

- 374. Hong JM, Lee JS, Song HJ, Jeong HS, Jung HS, Choi HA, Lee K. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke. *Stroke*. 2014;45:134–140. doi: 10.1161/STROKEAHA.113.003143.
- 375. Ovesen C, Brizzi M, Pott FC, Thorsen-Meyer HC, Karlsson T, Ersson A, Christensen H, Norrlin A, Meden P, Krieger DW, Petersson J. Feasibility of endovascular and surface cooling strategies in acute stroke. *Acta Neurol Scand.* 2013;127:399–405. doi: 10.1111/ane.12059.
- 376. Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0-to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study: Thromblytic Therapy in Acute Ischemic Stroke Study Investigators. *Stroke*. 2000;31:811–816.
- 377. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS study: a randomized controlled trial: Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. *JAMA*. 1999;282: 2019–2026.
- 378. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II): Second European-Australasian Acute Stroke Study Investigators. *Lancet*. 1998;352:1245–1251.
- 379. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). *JAMA*. 1995;274:1017–1025.
- 380. Mori E, Minematsu K, Nakagawara J, Hasegawa Y, Nagahiro S, Okada Y, Truelsen T, Lindsten A, Ogawa A, Yamaguchi T; on behalf of the DIAS-J Investigators. Safety and tolerability of desmoteplase within 3 to 9 hours after symptoms onset in Japanese patients with ischemic stroke. *Stroke*. 2015;46:2549–2554. doi: 10.1161/STROKEAHA.115.009917.
- 381. Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Davalos A, Bonafe A, Jahan R, Fischer U, Gralla J, Saver JL, Pereira VM. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemic stroke: a pooled analysis of the SWIFT and STAR Studies. *JAMA Neurol.* 2017;74:268–274. doi: 10.1001/jamaneurol.2016.5374.
- 382. Grech R, Pullicino R, Thornton J, Downer J. An efficacy and safety comparison between different stentriever designs in acute ischaemic stroke: a systematic review and meta-analysis. *Clin Radiol.* 2016;71:48–57. doi: 10.1016/j.crad.2015.09.011.
- 383. Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. *BMJ*. 2016;353:i1754.
- 384. Touma L, Filion KB, Sterling LH, Atallah R, Windle SB, Eisenberg MJ. Stent retrievers for the treatment of acute ischemic stroke: a systematic review and meta-analysis of randomized clinical trials. *JAMA Neurol.* 2016;73:275–281. doi: 10.1001/jamaneurol.2015.4441.
- 385. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, Alshahrani M, Murty NK, Alhazzani A, Yarascavitch B, Reddy K, Zaidat OO, Almenawer SA. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. *JAMA*. 2015;314:1832–1843. doi: 10.1001/jama.2015.13767.
- 386. Chen CJ, Ding D, Starke RM, Mehndiratta P, Crowley RW, Liu KC, Southerland AM, Worrall BB. Endovascular vs medical management of acute ischemic stroke. *Neurology*. 2015;85:1980–1990. doi: 10.1212/WNL.0000000000002176.

- 387. Elgendy IY, Kumbhani DJ, Mahmoud A, Bhatt DL, Bavry AA. Mechanical thrombectomy for acute ischemic stroke: a meta-analysis of randomized trials. *J Am Coll Cardiol*. 2015;66:2498–2505. doi: 10.1016/j.jacc.2015.09.070.
- 388. Fargen KM, Neal D, Fiorella DJ, Turk AS, Froehler M, Mocco J. A meta-analysis of prospective randomized controlled trials evaluating endovascular therapies for acute ischemic stroke. *J Neurointerv Surg.* 2015;7:84–89. doi: 10.1136/neurintsurg-2014-011543.
- 389. Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis. *J Neurointery Surg.* 2015;7:868–874. doi: 10.1136/neurintsurg-2014-011418.
- 390. Marmagkiolis K, Hakeem A, Cilingiroglu M, Gundogdu B, Iliescu C, Tsitlakidou D, Katramados A. Safety and efficacy of stent retrievers for the management of acute ischemic stroke: comprehensive review and meta-analysis. *JACC Cardiovasc Interv.* 2015;8:1758–1765. doi: 10.1016/j.jcin.2015.07.021.
- 391. Yarbrough CK, Ong CJ, Beyer AB, Lipsey K, Derdeyn CP. Endovascular thrombectomy for anterior circulation stroke: systematic review and meta-analysis. *Stroke*. 2015;46:3177–3183. doi: 10.1161/STROKEAHA.115.009847.
- 392. Almekhlafi MA, Menon BK, Freiheit EA, Demchuk AM, Goyal M. A meta-analysis of observational intra-arterial stroke therapy studies using the Merci device, Penumbra system, and retrievable stents. *AJNR Am J Neuroradiol.* 2013;34:140–145. doi: 10.3174/ajnr.A3276.
- 393. Fields JD, Khatri P, Nesbit GM, Liu KC, Barnwell SL, Lutsep HL, Clark WM, Lansberg MG. Meta-analysis of randomized intra-arterial thrombolytic trials for the treatment of acute stroke due to middle cerebral artery occlusion. *J Neurointerv Surg.* 2011;3:151–155. doi: 10.1136/jnis.2010.002766.
- 394. Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis. *AJNR Am J Neuroradiol.* 2015;36:525–529. doi: 10.3174/ajnr.A4159.
- 395. Li W, Lin L, Zhang M, Wu Y, Liu C, Li X, Huang S, Liang C, Wang Y, Chen J, Feng W. Safety and preliminary efficacy of early tirofiban treatment after alteplase in acute ischemic stroke patients. *Stroke*. 2016;47:2649–2651. doi: 10.1161/STROKEAHA.116.014413.
- 396. Wada T, Yasunaga H, Horiguchi H, Fushimi K, Matsubara T, Nakajima S, Yahagi N. Ozagrel for patients with noncardioembolic ischemic stroke: a propensity score-matched analysis. *J Stroke Cerebrovasc Dis.* 2016;25:2828–2837. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.044.
- 397. Sandercock PA, Counsell C, Kamal AK. Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev. 2008:CD000024.
- 398. Wang Q, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin and early neurologic deterioration in acute stroke caused by large artery occlusive disease. *Arch Neurol.* 2012;69:1454–1460. doi: 10.1001/archneurol.2012.1633.
- 399. Wang QS, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin versus aspirin for acute ischemic stroke with large artery occlusive disease: subgroup analyses from the Fraxiparin in Stroke Study for the treatment of ischemic stroke (FISS-tris) study. *Stroke*. 2012;43:346–349. doi: 10.1161/STROKEAHA.111.628347.

- 400. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, Conwit R, Liebeskind DS, Sung G, Kramer I, Moreau G, Goldweber R, Sanossian N; FAST-MAG Investigators and Coordinators. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. *N Engl J Med.* 2015;372:528–536. doi: 10.1056/NEJMoa1408827.
- 401. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A, Richieri SP, Dilly SG, Zivin J, Lees KR; for the NEST 3 Committees and Investigators. Transcranial laser therapy in acute stroke treatment: results of Neurothera Effectiveness and Safety Trial 3, a phase III clinical end point device trial. *Stroke*. 2014;45:3187–3193. doi: 10.1161/STROKEAHA.114.005795.
- 402. Seedat J, Penn C. Implementing oral care to reduce aspiration pneumonia amongst patients with dysphagia in a South African setting. *S Afr J Commun Disord*. 2016;63.
- 403. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G; CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. *Lancet*. 2013;382:516–524. doi: 10.1016/S0140-6736(13)61050-8.
- 404. Geeganage CM, Sprigg N, Bath MW, Bath PM. Balance of symptomatic pulmonary embolism and symptomatic intracerebral hemorrhage with low-dose anticoagulation in recent ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. *J Stroke Cerebrovasc Dis.* 2013;22:1018–1027. doi: 10.1016/j.jstrokecerebrovasdis.2012.03.005.
- 405. Qaseem A, Chou R, Humphrey LL, Starkey M, Shekelle P; Clinical Guidelines Committee of the American College of Physicians. Venous thromboembolism prophylaxis in hospitalized patients: a clinical practice guideline from the American College of Physicians. *Ann Intern Med.* 2011;155:625–632. doi: 10.7326/0003-4819-155-9-201111010-00011.
- 406. Herisson F, Godard S, Volteau C, Le Blanc E, Guillon B, Gaudron M; SEVEL Study Group. Early Sitting in Ischemic Stroke Patients (SEVEL): a randomized controlled trial. *PLoS One*. 2016;11:e0149466. doi: 10.1371/journal.pone.0149466.
- 407. Morreale M, Marchione P, Pili A, Lauta A, Castiglia SF, Spallone A, Pierelli F, Giacomini P. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? *Eur J Phys Rehabil Med.* 2016;52:81–89.
- 408. Johansson E, Cuadrado-Godia E, Hayden D, Bjellerup J, Ois A, Roquer J, Wester P, Kelly PJ. Recurrent stroke in symptomatic carotid stenosis awaiting revascularization: a pooled analysis. *Neurology*. 2016;86:498–504. doi: 10.1212/WNL.0000000000002354.
- 409. Bazan HA, Zea N, Jennings B, Smith TA, Vidal G, Sternbergh WC 3rd. Urgent carotid intervention is safe after thrombolysis for minor to moderate acute ischemic stroke. *J Vasc Surg.* 2015;62:1529–1538. doi: 10.1016/j.jvs.2015.07.082.
- 410. Chisci E, Pigozzi C, Troisi N, Tramacere L, Zaccara G, Cincotta M, Ercolini L, Michelagnoli S. Thirty-day neurologic improvement associated with early versus delayed carotid endarterectomy in symptomatic patients. *Ann Vasc Surg.* 2015;29:435–442. doi: 10.1016/j. avsg.2014.08.028.
- 411. Devlin TG, Phade SV, Hutson RK, Fugate MW, Major GR 2nd, Albers GW, Sirelkhatim AA, Sapkota BL, Quartfordt SD, Baxter BW. Computed tomography perfusion imaging in the selection of acute stroke patients to undergo emergent carotid endarterectomy. *Ann Vasc Surg.* 2015;29:125. e1–125.11. doi: 10.1016/j.avsg.2014.07.023.

- 412. Steglich-Arnholm H, Holtmannspötter M, Kondziella D, Wagner A, Stavngaard T, Cronqvist ME, Hansen K, Højgaard J, Taudorf S, Krieger DW. Thrombectomy assisted by carotid stenting in acute ischemic stroke management: benefits and harms. *J Neurol*. 2015;262:2668–2675. doi: 10.1007/s00415-015-7895-0.
- 413. Ferrero E, Ferri M, Viazzo A, Labate C, Berardi G, Pecchio A, Piazza S, Ripepi M, Nessi F. A retrospective study on early carotid endarterectomy within 48 hours after transient ischemic attack and stroke in evolution. *Ann Vasc Surg.* 2014;28:227–238. doi: 10.1016/j. avsg.2013.02.015.
- 414. Limone BL, Baker WL, Mearns ES, White CM, Kluger J, Coleman CI. Common flaws exist in published cost-effectiveness models of pharmacologic stroke prevention in atrial fibrillation. *J Clin Epidemiol*. 2014;67:1093–1102. doi: 10.1016/j.jclinepi.2014.05.013.
- 415. Shariat A, Yaghoubi E, Farazdaghi M, Aghasadeghi K, Borhani Haghighi A. Comparison of medical treatments in cryptogenic stroke patients with patent foramen ovale: a randomized clinical trial. *J Res Med Sci.* 2013;18:94–98.
- 416. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP; for the PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study. *Circulation*. 2002;105:2625–2631.
- 417. Kim JT, Park MS, Choi KH, Cho KH, Kim BJ, Han MK, Park TH, Park SS, Lee KB, Lee BC, Yu KH, Oh MS, Cha JK, Kim DH, Nah HW, Lee J, Lee SJ, Ko YC, Kim JG, Park JM, Kang K, Cho YJ, Hong KS, Choi JC, Kim DE, Ryu WS, Shin DI, Yeo MJ, Kim WJ, Lee J, Lee JS, Saver JL, Bae HJ. Different antiplatelet strategies in patients with new ischemic stroke while taking aspirin. *Stroke*. 2016;47:128–134. doi: 10.1161/STROKEAHA.115.011595.
- 418. Lee M, Wu YL, Saver JL, Lee HC, Lee JD, Chang KC, Wu CY, Lee TH, Wang HH, Rao NM, Ovbiagele B. Is clopidogrel better than aspirin following breakthrough strokes while on aspirin? A retrospective cohort study. *BMJ Open.* 2014;4:e006672. doi: 10.1136/bmjopen-2014-006672.
- 419. Abdul-Rahim AH, Fulton RL, Frank B, Tatlisumak T, Paciaroni M, Caso V, Diener HC, Lees KR; VISTA Collaborators. Association of improved outcome in acute ischaemic stroke patients with atrial fibrillation who receive early antithrombotic therapy: analysis from VISTA. *Eur J Neurol.* 2015;22:1048–1055. doi: 10.1111/ene.12577.
- 420. Jensen J, Salottolo K, Frei D, Loy D, McCarthy K, Wagner J, Whaley M, Bellon R, Bar-Or D. Comprehensive analysis of intra-arterial treatment for acute ischemic stroke due to cervical artery dissection. *J Neurointerv Surg.* 2017;9:654–658. doi: 10.1136/neurintsurg-2016-012421.
- 421. Aronow HD, Novaro GM, Lauer MS, Brennan DM, Lincoff AM, Topol EJ, Kereiakes DJ, Nissen SE. In-hospital initiation of lipid-lowering therapy after coronary intervention as a predictor of long-term utilization: a propensity analysis. *Arch Intern Med.* 2003;163:2576–2582. doi: 10.1001/archinte.163.21.2576.

Data Supplement 2

Literature Searches

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
			able 1. Nonrandomiz Table 2. Ra Nonrandomized Stud	ed Studies of Str Indomized Contro lies of Emergence	sment and management: recognize, oke Awareness and Emergency Medicolled Trials for Improving Stroke Aware by Medical Services Use of Prehospital ed Studies of Stroke Systems of Care	al Services Us ness			
PubMed	10/25/2016	1/1/2012- 10/25/2016	Humans, English only	None	public education stroke	468	61	22	0
clinicaltrials.gov	10/25/2016	No restrictions	N/A	None	public education stroke	40	40	N/A	0
PubMed	10/25/2016	1/1/2012- 10/25/2016	English only	None	ems management stroke	66	66	23	0
PubMed	10/25/2016	1/1/2012- 10/25/2016	English only	None	prehospital stroke management	116	116	40	0
clinicaltrials.gov	10/26/2016	No restrictions	N/A	None	ems stroke	45	45	N/A	0
clinicaltrials.gov	10/26/2016	No restrictions	N/A	None	Prehospital stroke	49	49	N/A	0
	Tabl	e 3. Nonrandon			ation: benefit of stroke scale use nd/or Registries of Prediction Value of	National Institu	utes of Health St	roke Scale	
PubMed	11/4/2016 (updated 2/4/2017)	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	NIH Stroke Scale, Use	276	276	2	0
PubMed	11/4/2016 (updated 2/4/2017)	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	NIH Stroke Scale, Benefit	31	31	0	0
PubMed	11/4/2016 (updated 2/4/2017)	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	NIH Stroke Scale, Emergency	151	151	2	0
	ole 17. Randomi			f Baseline Imagii	on IV alteplase interaction ng Computed Tomography Hypodensit ography Hyperdense Middle Cerebral				

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	10/30/2016	No limit (4/1/1990 - 2/28/2016 returned)	RCTs with interaction term calculated	Non-English	"tissue plasminogen activator" [MeSH Terms] AND ("brain ischemia/radiography" [Mesh Terms] OR "cerebrovascular disorders/radiography" [Mesh Terms] OR "stroke/radiography" [Mesh Terms]) AND ("randomized controlled trials as topic" [MeSH Terms] OR ("randomized controlled trial" [Publication Type] OR "randomized controlled trials as topic" [MeSH Terms] OR "randomized controlled trials as topic" [MeSH Terms] OR "randomized controlled trial" [All Fields] OR "randomised controlled trial" [All Fields]) OR ECASS[All Fields] OR "NINDS rt-PA Stroke Study" [All Fields] OR EPITHET[All Fields] OR "early ischemic changes" [All Fields] OR hypoattenuation [All Fields] OR "Alberta Stroke Program Early CT score" [All Fields])	82	82	7	5
EMBASE	10/30/2016	No limit (1/1/2004- 12/30/2016 returned)	RCTs with interaction term calculated	Non-English	'tissue'/exp OR tissue AND ('plasminogen'/exp OR plasminogen) AND activator AND 'clinical' AND trial AND (early AND ischemic AND changes OR hypoattenuation OR 'alberta'/exp OR alberta) AND ('stroke'/exp OR stroke) AND program AND early AND ct AND score	21	21	1	0
Other	10/31/2016	N/A	RCTs with interaction term calculated	Non-English	Personal files, referenced by other studies	5	4	4	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	10/31/2016	1/1/2015 – 12/31/2016	RCTs with interaction term calculated	Non-English	stroke AND "Alberta Stroke Program Early CT score" AND (thrombectomy OR endovascular)	49	49	5	2
EMBASE	10/31/2016	No limit (1/1/2011 - 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	thrombectomy AND 'clinical' AND trial AND (early AND ischemic AND changes OR hypoattenuation OR 'alberta'/exp OR alberta) AND ('stroke'/exp OR stroke) AND program AND early AND ct AND score	17	17	0	0
Other	10/31/2016	N/A	RCTs with interaction term calculated	Non-English	Personal files, referenced by other studies	1	1	1	1
Table 18 Ra	andomized Contr	olled Trials of Ir	nteraction of Baseline		MCA IV alteplase interaction ography Hyperdense Middle Cerebral	Artery Sian wi	th Treatment Effe	ect for Intraver	nous Altenlase
PubMed	10/21/2016	No limit (1/1/2010 - 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	"tissue plasminogen activator"[MeSH Terms] AND ("brain ischemia/radiography"[Mesh Terms] OR "cerebrovascular disorders/radiography"[Mesh Terms] OR "stroke/radiography"[Mesh Terms]) AND ("randomized controlled trials as topic"[MeSH Terms] OR ("randomized controlled trial"[Publication Type] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trial"[All Fields] OR "randomised controlled trial"[All Fields])) AND "hyperdense middle cerebral artery"[All Fields]	1 (and 16 cited by)	17	2	2
EMBASE	10/30/2016	No limit (1/1/1999 - 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	'tissue'/exp OR tissue AND ('plasminogen'/exp OR plasminogen) AND activator AND 'clinical' AND trial AND hyperdense middle cerebral artery sign	4	34	3	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					CA IV alteplase interaction II				
Table 19. Observ	ational Studies o		Baseline Magnetic R	esonance Imagir	ng of Cerebral Microbleeds with Sympto	matic Intrace	rebral Hemorrha	ge After Intrav	enous Alteplase
PubMed	11/2/2016	No limit (1/1/2004 - 12/31/2015 returned)	RCTs with interaction term calculated	Non-English	Thrombectomy OR endovascular OR intra-arterial AND "hyperdense middle cerebral artery" [All Fields]	10	10	0	0
EMBASE	10/30/2016	No limit (1/1/2012- 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	thrombectomy AND 'clinical' AND trial AND hyperdense middle cerebral artery sign	2	2	0	0
	•	,			naging times achievable			•	
	1	1			of 2016 Door-to-Computed Tomograp			1 .	
PubMed	10/31/2016	2016 publication date	US only, door-to- CT time	Non-English	("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND (door-to- CT[All Fields] OR (door-to- needle[All Fields] AND ("contraindications"[Subheading] OR "contraindications"[All Fields] OR "ct"[All Fields]))) 2014-2016	15	15	4	3
EMBASE	10/31/2016	2016 publication date	US only, door-to- CT time	Non-English	stroke AND 'door to ct'	25	25	0	0
Other	10/31/2016	2016 publication date	US only, door-to- CT time	Non-English	Personal files, referenced by other studies	1	1	1	1
					ultimodal imaging				
	Table 2				Intravenous Thrombolytics Employing d/or Registries of Intravenous Thrombo			naging	
PubMed	10/10/2016 (updated 10/11/2016)	No range	None	None	acute ischemic stroke AND trial OR multimodal imaging OR penumbra OR mismatch OR imaging selection	357	274	27	8
Other	10/11/16	No range	None	None	Personal files	1	1	1	1
	Table 22	2. Nonrandomiz Ta	ed Trials, Observationable 24. Nonrandomi	nal Studies, and	collateral status imaging /or Registries of Creatinine Testing Pricryational Studies, and/or Registries of C	or to Contrast Collateral Stat	Computed Tomo	ography	

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	10/10/2016 (updated 10/11/2016	No range	None	None	acute stroke AND CTA OR MRA OR vessel imaging OR collaterals	757	395	37	8
		•			e MRI microbleeds with IV alteplase				
Table 19. Obser	rvational Studies	of Interaction of	f Baseline Magnetic I		ing of Cerebral Microbleeds with Symp	tomatic Intrac	erebral Hemorrh	age After Intra	venous Alteplase
PubMed	11/16/2016	11/16/2016 -7/31/2013	English only, Adults, meta- analyses	abstracts, includes studies included in more recent meta- analyses	microbleeds AND stroke AND thrombolysis AND meta-analysis	6	6	2	2
Embase	11/16/2016	11/16/2016 -8/31/2004	English only, Adults, meta- analyses	abstracts, includes studies included in more recent meta- analyses	microbleeds AND stroke AND thrombolysis AND meta-analysis	17	17	0	0
					Blood pressure				
	40/00/0040	Table 29. I	Nonrandomized Trial	s, Observational	Studies, and/or Registries of Blood Pre	ssure and Th	rombolysis		
PubMed	10/28/2016 (updated 2/28/2017)	1/1/2010- 2/28/2017	from 2010 on; English	pediatric, foreign lang	blood pressure and AIS; vasoactive agents and AIS	582	321	20	8
			Table 26 Da		en supplementation olled Trials Comparing Supplemental O	yygon			
PubMed	10/26/2016 (updated 10/27/2016)	1/1/2010- 10/27/2016	from 2010 on; English	pediatric, foreign lang	oxygen supplementation and acute stroke	6	5	1	0
PubMed	10/28/2016 (updated 12/7/2016)	1/1/2010- 12/7/2016	from 2010 on; English	pediatric, foreign lang	acute stroke and oxygen supplementation	18	10	4	4
Google	12/7/2016	1/1/2010- 12/7/2016	from 2010 on; English	pediatric, foreign lang	singhal and oxygen and stroke	2	2	1	2

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					Temperature				
					es of Hyperthermia After Acute Ischemed Controlled Trials of Normothermia	ic Stroke			
					Observational Studies, and/or Registric	es of Hypother	mia		
					ed Controlled Trials of Hypothermia	o or riypouror	·····a		
PubMed		1/1/2010-	from 2010 on;	pediatric,	hypothermia and acute stroke	210	51	15	8
i ubivieu	11/21/2016	11/21/2016	English	foreign lang	Trypothermia and acute stroke	210	31	10	0
PubMed	10/27/2016	1/1/2010- 10/27/2016	from 2010 on; English	pediatric, foreign lang	hyperthermia and acute stroke	202	50	0	0
	10/21/2010	1/1/2010-	from 2010 on;	pediatric,		_		_	
PubMed	11/21/2016	11/21/2016	English	foreign lang	normothermia and acute stroke	73	15	6	4
PubMed		1/1/2010-	from 2010 on;	pediatric,	anti-pyretics and acute stroke	318	3	2	1
1 ubivicu	11/21/2016	11/21/2016	English	foreign lang		010	J J		'
		Table 20 N	Jonrandamizad Trial		re and Endovascular Therapy Studies, and/or Registries of Blood Pre	secure and Th	rombolyoio		
		1/1/2010-	from 2010 on;	pediatric.	blood pressure and stroke and				
PubMed	10/28/2016	10/28/2016	English	foreign lang	endovascular therapy	83	5	1	1
PubMed		1/1/2010-	from 2010 on;	pediatric,	blood pressure and stroke and	43	3	0	0
rubivieu	10/28/2016	10/28/2016	English	foreign lang	recanalization	45	3	U	U
	T	4/4/0040	. 0040		Hypertension Therapy	ı	Τ	1	
PubMed	11/9/2016	1/1/2010- 11/9/2016	from 2010 on; English	pediatric, foreign lang	induced HTN - therapy - stroke	297	1	0	0
		11/9/2010	English		ic Hypertension – Stroke				
Dollard		1/1/2010-	from 2010 on;	pediatric,		070	4		0
PubMed	11/9/2016	11/9/2016	English	foreign lang	therapeutic hypertension - stroke	373	1	1	0
PubMed	4.4.0.00.4.0	1/1/2010-	from 2010 on;	pediatric,	ischemic stroke - vasopressors	120	0	0	0
	11/9/2016	11/9/2016	English	foreign lang	'	0			
		Table 29 N	Nonrandomized Trial		ssure and Thrombolysis Studies, and/or Registries of Blood Pre	essure and Th	rombolysis		
DokMad		1/1/2010-	from 2010 on;	pediatric,	•			45	40
PubMed	11/22/2016	11/22/2016	English	foreign lang	BP and thrombolysis and stroke	182	45	15	13
					НВО				
	T	Tab 1/1/2010 -	ole 27. Nonrandomize from 2010 on;		vational Studies, and/or Registries of H	1		1	
PubMed	3/29/2017	3/29/2017	English	pediatric, foreign lang	HBO and acute ischemic stroke	20	20	4	1
	3,20,2011	1/1/2010-	from 2010 on;	pediatric,	cerebral air emboli and stroke and				
PubMed	11/22/2016	11/22/2016	English	foreign lang	НВО	10	1	1	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/22/2016	1/1/2010- 11/22/2016	from 2010 on; English	pediatric, foreign lang	cerebral air emboli and stroke	67	6	0	0
	11/22/2010	11/22/2010	English	loreign lang	Hypotension	01	Ü	0	0
			Table 23. Ra	ndomized Contro	olled Trials Comparing Endovascular Th	nerapy			
PubMed	12/14/2016	1/1/2010- 12/14/2016	from 2010 on; English	pediatric, foreign lang	hypotension and acute stroke and treatment	135	5	5	0
	T 00				IV lysis	-		0	
	Table 39	1/1/1980-	Jontrolled Trials Eval	uating Intraveno	us Fibrinolytics Other Than Alteplase for thrombolysis + stroke +	or Treatment of	of Acute Ischemic	c Stroke	
PubMed	12/16/2016	11/30/2016	RCTs	Non RCTs	randomized	1250	543	78	21
					eplase, IV, stroke				
		Table 34. R	andomized Controlle	d Trials Evaluati	ng Intravenous Alteplase for Treatment	of Acute Isch	emic Stroke		
MEDLINE	12/22/2016	1/1/1995– 12/1/2016	Human, English, Adults	Non-RCTs	tissue plasminogen activator, rtPA, tPA, intravenous or IV alteplase, stroke or ischemic stroke or thrombosis or brain ischemia or cerebrovascular disorders	5134	879	269	87
					plase for mild stroke 3-4.5 hours				
					s of Intravenous Alteplase for Mild Stro				
	l at	ole 36. Nonrand	lomized Trials, Obsei 3-4.5 hours RCT	vational Studies	, and/or Registries of Intravenous Altep	lase 3–4.5 Ho	ours for Mild Stro	ke	
PubMed	4/16/2017	thru 12/31/2009	subgroup analysis	English only	ECASS III AND subgroup	3	3	1	1
PubMed	4/16/2017	thru 9/30/2005	registry compare < 3 to 3-4.5	English only	alteplase AND mild stroke AND 4.5	19	19	1	1
PubMed	4/16/2017	Thru 5/30/2013	registry compare < 3 to 3-4.5	English only	alteplase AND mild stroke AND 3- 4.5	2	2	1	1
PubMed	4/16/2017	thru 10/31/2008	registry compare < 3 to 3-4.5	English only	3-4.5 AND SITS-ISTR	5	5	1	0
Embase	4/16/2017	thru 12/31/2013	3-4.5 h data	English only	alteplase AND mild stroke AND 4.5 AND clinical trial	4	4	1	0
T 11 00 1					venous Fibrinolysis	A.I. I			. 0. 1
1 able 38. N	Nonrandomized 1	riais, Observat		nrombotic Agenti	s Given Within 24 Hours After Intravend	ous Alteplase	tor the Treatmer	nt of Acute Iscl	nemic Stroke
PubMed	12/16/2016	1/1/1995- 12/16/2016	Adults - after 1995	case reports	thrombolysis + stroke + antithrombotics OR antiplatelets	952	252	15	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
	•				ascular interventions				
Tabl		Γable 42. Rando	e 41. Nonrandomized omized Controlled Tri	Trials, Observa als Comparing G	olled Trials Comparing Endovascular Th tional Studies, and/or Registries of End General Anesthesia to Conscious Sedat Comparing General Anesthesia to Con	lovascular The	ascular Stroke T		nerapy
PubMed	9/21/2016	1/1/1966- 9/21/2016	humans, English-only, 10 or more patients	studies not regarding acute ischemic stroke, commentarie s, editorials, letters to the editor	acute ischemic stroke AND thrombectomy OR endovascular OR intra-arterial OR stent retriever OR clot retrieval	42,251	42,251	585	32
Cochrane Central Register of Controlled Trials	9/25/2016	1/1/1966- 9/25/2016	Humans, English-only. (Randomized trial, meta- analysis, systematic review, pooled analysis, or registry)	Studies not regarding acute ischemic stroke, commentarie s, editorials, letters to the editor	acute ischemic stroke AND thrombectomy OR endovascular OR intra-arterial OR stent retriever OR clot retrieval	3445	3445	197	32
			rogiony)		Anticoagulation			1	
Table 76.	. Subgroup Analy	ses of Random	able 47. Nonrandom ized Controlled Trials Table 77. Studies o	ized Studies of A s of Antiplatelet \ f Early Secondar	lled Trials Comparing Anticoagulant to Anticoagulation in Patients with Acute Is /ersus in Patients with Non-cardioemborn y Prevention in Patients with Acute Isc Antiplatelet Versus Anticoagulation in O	schemic Strok blic AIS Taking hemic Stroke	g Antiplatelets at	Time of Quali	fying Event
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"anticoagulation", "acute ischemic stroke"	112	112	11	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans, Clinical Trial	None	"anticoagulation", "acute ischemic stroke"	5	5	1	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"enoxaparin", "acute ischemic stroke"	5	5	0	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"dalteparin", "acute ischemic stroke"	1	1	0	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"heparin", "acute ischemic stroke"	49	49	5	2
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"apixaban", "acute ischemic stroke"	12	12	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"rivaroxaban", "acute ischemic stroke"	20	20	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"dabigatran", "acute ischemic stroke"	30	30	3	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"argatroban", "acute ischemic stroke"	6	6	3	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"argatroban", "stroke"	38	38	2	2
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"edoxaban", "acute ischemic stroke"	4	4	0	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"fondaparinux", "acute ischemic stroke"	2	2	0	0
		Table 7 Table 78. R	Table 45. Ra 77. Nonrandomized S andomized Controlle	andomized Contr Studies of Early S ed Trials of Early	tiplatelet Therapy in Patients with Acute olled Trials Comparing Antiplatelet to Coecondary Prevention in Patients with Antiplatelet Versus Anticoagulation in	Control Acute Ischemic Cervical Artery	c Stroke y Dissection		
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"aspirin", "acute ischemic stroke"	98	98	1	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans, Clinical Trial	None	"aspirin", "acute ischemic stroke"	33	33	1	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"clopidogrel", "acute ischemic stroke"	47	47	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans, Clinical Trial	None	"clopidogrel", "acute ischemic stroke"	12	12	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"ticagrelor", "acute ischemic stroke"	4	4	2	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"prasugrel", "acute ischemic stroke"	0	0	0	0
PubMed	7/10/2017	1/1/2010- 7/4/2017	English & Humans	None	"cilostazol", "acute ischemic stroke"	14	14	1	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					ASA Failure				
			Table 74. F	Randomized Con Nonrandomize	trolled Trials of Recurrent Stroke on As d Studies of Recurrent Stroke on Aspir	pirin in			
	7/16/2017	1/1/2010-	English, Humans	None	"aspirin failure" and "stroke"	7	7	1	0
PubMed	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7/16/2017				,	•		-
PubMed	7/16/2017	1/1/2010- 7/16/2017	English, Humans	None	"aspirin resistance" and "stroke"	64	64	1	0
PubMed	7/16/2017	1/1/2010- 7/16/2017	English, Humans	None	"aspirin" and "stroke" and "switch"	7	5	1	1
	Tab	le 80. Nonrando			Statins tiation of Statins in Patients Hospitalize tion of Statins in Patients Hospitalized			nts	
PubMed	01/12/2017	No restrictions (10/1/1997 — 10/12/2017 returned)	English & Humans	Non-English	"statins", "acute ischemic stroke"	400	400	22	5
PubMed	01/12/2017	No restrictions (8/1/1998 – 11/30/2016 returned)	English & Humans	Non-English	"simvastatin", "acute ischemic stroke"	44	44	7	2
PubMed	01/13/2017	No restrictions (3/1/1998 – 1/13/2017 returned)	English & Humans	Non-English	"atorvastatin", "acute ischemic stroke"	65	65	5	3
PubMed	01/13/2017	No restrictions (8/1/1998 – 11/30/2016 returned)	English & Humans	Non-English	"Lovastatin", "acute ischemic stroke"	34	34	0	0
PubMed	01/14/2017	No restrictions (11/1/2007	English & Humans	Non-English	"Rosuvastatin", "acute ischemic stroke"	19	19	2	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
		12/31/2016 returned)							
PubMed	01/14/2017	No restrictions (1/1/2004 – 1/30/2016 returned)	English & Humans	Non-English	"Fluvastatin", "acute ischemic stroke"	2	2	0	0
PubMed	01/15/2017	No restrictions (10/1/1996 — 11/30/2016 returned)	English & Humans	Non-English	"statins", "acute atherosclerotic events"	179	179	25	3
PubMed	01/15/2017	No restrictions (10/1/1996 -6/30/2016 returned)	English & Humans	Non-English	"simvastatin", "acute atherosclerotic events"	23	23	10	2
PubMed	01/16/2017	No restrictions (12/1/1998 - 6/30/2016 returned)	English & Humans	Non-English	"atorvastatin", "acute atherosclerotic events""	36	36	11	5
PubMed	01/16/2017	No restrictions (10/1/1996 -8/31/2013 returned)	English & Humans	Non-English	"Lovastatin "acute atherosclerotic events"	20	20	0	0
PubMed	01/17/2017	No restrictions (3/1/2004 – 6/30/2016 returned)	English & Humans	Non-English	"Rosuvastatin", "acute atherosclerotic events"	7	7	4	1
PubMed	01/17/2017	No restrictions (11/1/2002	English & Humans	Non-English	"Fluvastatin", "acute atherosclerotic events"	6	6	0	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
		11/30/2010 returned)							
clinicaltrials.gov	01/18/2016	No restrictions	N/A	None	"statins", "acute ischemic stroke"	3	3	1	0
clinicaltrials.gov	01/18/2016	No restrictions	N/A	None	"statins", "acute atherosclerotic events"	0	0	N/A	0
					Smoking		•		
					king Cessation in Patients with Acute Alloking Cessation in Patients with Acute				
PubMed	01/19/2017	No restrictions (5/1/1975 – 1/19/2017 returned)	English & Humans	Non-English	"smoking", "acute ischemic stroke"	644	644	33	7
PubMed	01/21/2017	No restrictions (5/1/1995 – 11/30/2016 returned)	English & Humans	Non-English	"smoking cessation", "acute ischemic stroke	45	45	9	5
PubMed	01/21/2017	No restrictions (1/1/1994 – 10/31/2016 returned)	English & Humans	Non-English	"smoking cessation", "acute atherosclerotic events"	11	11	4	1
clinicaltrials.gov	01/18/2016	No restrictions	N/A	None	"smoking cessation", "acute ischemic stroke	0	0	N/A	0
clinicaltrials.gov	01/18/2016	No restrictions	N/A	None	"smoking cessation", "acute atherosclerotic events"	0	0	N/A	0
			ole 48 Randomized		Neuroprotection Comparing Other Treatments for Acute	Ischemic Str	oke	•	
PubMed	7/10/2017	1/1/2010- 7/10/2017	English & Humans	none	"neuroprotection", "acute ischemic stroke"	87	87	0	0
		Table 6			ny and carotid artery stenting timing onal Studies/or Registries of Early Caro		rization	1	

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/23/2016 (updated 11/25/2016)	1/1/2014 - 1/1/2016	English only, Adults>18	None	(("endarterectomy, carotid"[MeSH Terms] OR ("endarterectomy"[All Fields] AND "carotid"[All Fields]) OR "carotid endarterectomy"[All Fields] OR ("carotid "[All Fields]) AND "endarterectomy"[All Fields])) AND ("emergencies"[MeSH Terms] OR "emergencies"[MeSH Terms] OR "emergency"[All Fields])) OR (("carotid artery, common"[MeSH Terms] OR ("carotid"[All Fields] AND "artery"[All Fields] AND "common carotid artery"[All Fields] OR "carotid artery"[All Fields]) OR "carotid artery"[All Fields] OR ("carotid"[All Fields] AND "artery"[All Fields] OR "carotid arteries"[MeSH Terms] OR ("carotid"[All Fields] AND "arteries"[All Fields]) OR "carotid arteries"[All Fields]) OR "carotid arteries"[All Fields]) OR "carotid arteries"[All Fields]) OR "stentid artery"[All Fields] OR "stentid artery"[All Fields]) AND "artery"[All Fields] OR "stent"[All Fields]) AND ("stents"[MeSH Terms] OR "stents"[All Fields]) AND ("2014/01/01"[PDAT] : "2016/12/31"[PDAT])	54	54	5	4

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
EMBASE	11/25/2016	1/1/2010 - 1/1/2016	English only, Adults >18	controlled trials	carotid'/exp OR carotid AND ('endarterectomy'/exp OR endarterectomy) OR 'carotid'/exp OR carotid AND ('artery'/exp OR artery) AND ('stenting'/exp OR stenting) AND acute AND cerebrovascular AND ('accident'/exp OR accident) OR timing AND [2010-2016]/py AND 'randomized controlled trial (topic)'/de AND ('carotid artery obstruction'/de OR 'transient ischemic attack'/de)	21	21	12	1
Cochrane	11/22/2016	1/1/2016- 12/31/2016	English only, Adults >18	None	carotid artery endarterectomy/stenting timing review	1	1	1	1
		Table 6			ite carotid endarterectomy or stenting on al Studies/or Registries of Early Caro		rization	_	

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/25/2016	1/1/2013 - 1/1/2016	English only, Adults>18	None	(("endarterectomy, carotid"[MeSH Terms] OR ("endarterectomy"[All Fields] AND "carotid"[All Fields]) OR "carotid endarterectomy"[All Fields] OR ("carotid endarterectomy"[All Fields] OR ("carotid"[All Fields]) AND "endarterectomy"[All Fields] AND ("complications"[Subheading] OR "complications"[All Fields])) OR (("carotid artery, common"[MeSH Terms] OR ("carotid"[All Fields] AND "common "[All Fields] AND "common carotid artery"[All Fields] OR ("carotid"[All Fields]) OR "carotid artery"[All Fields] OR ("carotid"[All Fields] AND "artery"[All Fields] OR "carotid arteries"[MeSH Terms] OR ("carotid"[All Fields]) OR "carotid arteries"[All Fields]) OR "carotid arteries"[All Fields]) OR "carotid arteries"[All Fields]) OR "stents"[MeSH Terms] OR ("stents"[MeSH Terms] OR "stents"[MeSH Terms] OR "stenting"[All Fields]) AND ("stents"[MeSH Terms] OR "stenting"[All Fields]) AND ("complications"[Subheading] OR "complications"[Subheading] OR "stroke"[All Fields] AND ("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("stroke"[All Fields]) AND ("stroke"[All Fields]) OR "acute stroke"[All Fields])) AND ("2013/01/01"[PDAT]: "2016/12/31"[PDAT])	149	149	21	3

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
EMBASE	11/25/2016	1/1/2010 - 1/1/2016	Journal articles only	None	carotid'/exp OR carotid AND ('endarterectomy'/exp OR endarterectomy) AND acute AND complications OR 'carotid'/exp OR carotid AND ('artery'/exp OR artery) AND ('stenting'/exp OR stenting) AND complications AND acute AND cerebrovascular AND ('accident'/exp OR accident) AND [2010-2016]/py	66	66	6	0
	Table 45 Name				ess of CT/MRI in acute stroke	ti- D		- D ti Ot	la Oara
PubMed	11/21/2016	3/1/1985- 11/30/2016	Formal cost- effectiveness analysis	Non-English	stries of Computed Tomography and M cost-effectiveness AND CT AND stroke	99	99	7	3
PubMed	11/22/2016	3/1/1985- 11/30/2016	Formal cost- effectiveness analysis	Non-English	cost-effectiveness AND MRI AND stroke	70	70	1	0
Embase	12/5/2016	7/1/1999- 12/31/2016	Formal cost- effectiveness analysis	Non-English	cost effectiveness':ti AND ('ct'/exp OR ct) AND ('stroke'/exp OR stroke)	60	60	4	0
Embase	12/5/2016	7/1/1999- 12/31/2016	Formal cost- effectiveness analysis	Non-English	'cost':ti AND ('ct'/exp OR ct) AND ('stroke'/exp OR stroke)	104	104	0	0
Embase	12/5/2016	3/1/2003- 12/31/2016	Formal cost- effectiveness analysis	Non-English	'cost':ti AND mri AND ('stroke'/exp OR stroke)	30	30	0	0
		T:			d Cholesterol for Secondary Stroke rvational Studies, and/or Registries of		uidelines		
PubMed	12/1/2016	6/1/1990- 12/31/2016	Guidelines only, most up-to-date for each source	Non-English	Guidelines[ti] AND Cholesterol AND Stroke	56	56	3	0
Embase	12/5/2016	1/1/2002- 12/31/2016	Guidelines only, most up-to-date for each source	Non-English	Guidelines:ti AND Cholesterol AND Stroke	34	34	0	0
Referenced in other articles	12/1/2016	N/A	N/A	Non-English	N/A	4	4	4	4

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
		Table 69 Nor			f echocardiography in acute stroke udies, and/or Registries of Cost-effective	eness of Ech	ocardiography		
PubMed	11/22/2016	7/1/1983- 12/31/2016	Formal cost- effectiveness analysis	Non-English	cost-effectiveness AND echocardiography AND stroke	55	55	8	3
Embase	12/1/2016	1/1/1992- 12/31/2016	Formal cost- effectiveness analysis	Non-English	cost-effectiveness AND echocardiography AND stroke	166	166	7	0
	Table 66. Selec	Table 67.	nized Trials, Observa Randomized Contro	tional Studies, a lled Trials of Prol	toring for secondary stroke preventi nd/or Registries Relevant to Cardiac M onged Cardiac Monitoring after Stroke econdary Stroke Prevention in Patients	onitoring for A with Clinical E	End Points	and Stroke Pre	evention
PubMed	12/1/2016	5/1/1996- 12/31/2016	RCTs with clinical endpoints	Non-English	cardiac monitoring AND randomized trial AND stroke AND anticoagulation	43	43	5	4
Embase	12/1/2016	9/1/2003- 12/31/2016	RCTs with clinical endpoints	Non-English	cardiac monitoring AND randomized trial AND stroke AND anticoagulation	75	75	4	0
		Table 6			stenosis and early recurrent stroke anal Studies/or Registries of Early Caro	tid Revascula	rization		
PubMed	12/5/2016	8/1/1992- 12/31/2016	recurrence rates for initial event of stroke	Non-English	symptomatic carotid stenosis AND early recurrent stroke	90	90	10	3
Embase	12/6/2016	1/1/2006- 12/31/2016	recurrence rates for initial event of stroke	Non-English	symptomatic AND carotid AND stenosis AND early AND recurrent AND stroke AND [2007-2017]/pyAND ('article'/it OR 'article in press'/it OR 'conference paper'/it OR 'conference review'/it OR 'note'/it OR 'review'/it OR 'short survey'/it)	78	78	9	1
		Table 6	63. Nonrandomized 1		arly carotid intervention onal Studies/or Registries of Early Caro	tid Revascula	rization		
PubMed	12/6/2016	4/1/1989- 12/31/2016	De Rango meta- analysis & not cited in De Rango meta analysis	Non-English	symptomatic carotid stenosis AND early intervention	55	55	3	2

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
Embase	12/6/2016	1/1/2007- 12/31/2016	De Rango meta- analysis & not cited in De Rango meta- analysis	Non-English	symptomatic AND carotid AND stenosis AND early AND intervention AND [2007-2017]/py AND ('article'/it OR 'article in press'/it OR 'conference paper'/it OR 'conference review'/it OR 'note'/it OR 'review'/it OR 'short survey'/it)	69	69	2	0
			•	•	recent ischemic stroke for obstructive paring Continuous Positive Airway Pre				

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/21/16	1/1/1996- 11/30/2016	Classical study, clinical study, clinical study, clinical trial, comment, comparative study, consensus development conference, CDC NIH, controlled clinical trial, duplicate publication, editorial, evaluation studies, guideline, historical article, meta analysis, multicenter study, observational study, practice guideline, randomized controlled trial, review, systematic reviews, validation studies, english, adults	None	("polysomnography"[MeSH Terms] OR "polysomnography"[All Fields]) AND (acute[All Fields] AND ("ischemia"[MeSH Terms] OR "ischemic"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields]))	45	45	34	2

MRA intracranial, non-invasive imaging intracranial

Table 64. Nonrandomized Trials, Observational Studies, and/or Registries of Intracranial Atherosclerotic Stenosis

Table 65. Randomized Controlled Trials of Intracranial Atherosclerotic Stenosis

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/14/16	1/1/2005- 11/30/2016	Classical study, clinical study, clinical study, clinical trial, comment, comparative study, consensus development conference, CDC NIH, controlled clinical trial, duplicate publication, editorial, evaluation studies, guideline, historical article, journal article, meta analysis, multicenter study, observational study, practice guideline, randomized controlled trial, review, systematic reviews, validation studies, english, adults	None	((Acute[All Fields] AND ("ischemia"[MeSH Terms] OR "ischemia"[All Fields]) OR "ischemic"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[MeSH Terms] OR "stroke"[All Fields])) AND (("hospitals"[MeSH Terms] OR "hospitals"[All Fields]) AND ("evaluation studies"[Publication Type] OR "evaluation studies as topic"[MeSH Terms] OR "evaluation"[All Fields]))) AND (("magnetic resonance spectroscopy"[MeSH Terms] OR ("magnetic"[All Fields] AND "resonance"[All Fields] AND "resonance"[All Fields] OR ("magnetic resonance spectroscopy"[All Fields] OR ("magnetic"[All Fields]) OR "magnetic resonance"[All Fields]) AND "resonance"[All Fields]) OR "magnetic resonance"[All Fields]) AND ("angiography"[MeSH Terms] OR "angiography"[All Fields]) AND intracranial[All Fields]) AND clinical Trial[ptyp]	3	3	3	2

CTA intracranial, non-invasive imaging

Table 64. Nonrandomized Trials, Observational Studies, and/or Registries of Intracranial Atherosclerotic Stenosis

Table 65. Randomized Controlled Trials of Intracranial Atherosclerotic Stenosis

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/14/16	1/1/2005- 11/30/2016	Classical study, clinical study, clinical study, clinical trial, comment, comparative study, consensus development conference, CDC NIH, controlled clinical trial, duplicate publication, editorial, evaluation studies, guideline, historical article, journal article, meta analysis, multicenter study, observational study, practice guideline, randomized cntrolled trial, review, systematic reviews, validation studies, english, adults	None	(((Acute[All Fields] AND ("ischemia"[MeSH Terms] OR "ischemia"[All Fields]) AND ("stroke"[MeSH Terms] OR "ischemic"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[MeSH Terms] OR "hospitals"[MeSH Terms] OR "hospitals"[All Fields]) AND ("evaluation studies"[Publication Type] OR "evaluation studies as topic"[MeSH Terms] OR "evaluation"[All Fields]))) AND (("tomography, x-ray computed"[MeSH Terms] OR ("tomography"[All Fields] AND "x-ray"[All Fields] AND "x-ray"[All Fields]) OR ("computed"[All Fields] OR ("computed"[All Fields] OR ("computed "[All Fields]) OR "computed tomography"[All Fields]) AND ("angiography"[All Fields]) OR "angiography"[All Fields]) ("neck"[MeSH Terms] OR "neck"[All Fields])))	4	4	4	2
Table	EO Dandamizad	Controlled Tric			lood pressure II	ro Poduction	in Dationto with /	outo loohomic	Stroko
PubMed	11/20/2016	1/1/1999– 11/20/2016	RCTs	Non RCTs	nitiation of Treatment for Blood Pressu randomized controlled trials + acute ischemic stroke + blood pressure treatment	180	n Patients With A	59	14

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
		Table 28	Nonrandomized Tria		ment of hypotension al Studies, and/or Registries of Hypotel	nsion and Hyn	ovolemia		
PubMed	4/30/2017	4/1/2017 - 12/31/1986	English only, association low blood pressure in acute ischemic stroke with outcome	Pediatric	Low blood pressure AND stroke	first 100 best match	13	13	8
	1	•		Intraver	nous fluids and stroke	l .		ı	•
		Table 28	. Nonrandomized Tria	als, Observation	al Studies, and/or Registries of Hypoter		ovolemia		
PubMed	4/30/2017	12/1/2016- 7/31/1992	English only	Pediatric	Fluids AND acute stroke	first 100 best match	6	6	1
				Transcranial	near-infrared laser therapy				
			Table 49. Randomize	ed Controlled Tria	als Comparing Transcranial Laser Thei	apy for Stroke)		
PubMed	12/12/2016	1/1/2000 - 1/1/2016	English only, Adults>18	None	(transcranial[All Fields] AND near[All Fields] AND infrared[All Fields] AND ("lasers"[MeSH Terms] OR "lasers"[All Fields] OR "laser"[All Fields])) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])	26	26	4	2
					cranial laser therapy				
	T			ed Controlled Tria	als Comparing Transcranial Laser The	apy for Stroke)	1	T
PubMed	12/12/2016	1/12000 - 1/1/2016	English only, Adults>18; RCTs	None	NEST-3[All Fields]	4	4	2	1
PubMed	12/12/2016	1/1/2000- 1/1/2016	English only, Adults>18	None	NILT[All Fields] AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])	7	7	1	0
Embase	12/12/2016	1/1/2000 - 1/1/2016	English only, Adults>18	None	NILT[All Fields]	21	21	0	0
Embase	12/12/2016	1/1/2000 - 1/1/2016	English only, Adults>18	None	NEST-3 AND "stroke"[All Fields]	8	8	2	1
	1			bral edema, su	rgical decompression suboccipital		1	1	I

Cerebral edema, surgical decompression suboccipital

Table 59. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke
Table 60. Randomized Controlled Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
Embase	1/20/2016	1/1/2014 - 1/1/2016	Cochrane review, Systematic review, Meta- analysis, controlled clinical trial	None	brain AND edema AND 'cerebrovascular accident' AND ([cochrane review]/lim OR [systematic review]/lim OR [meta analysis]/lim OR [controlled clinical trial]/lim) AND [2014-2016]/pi	48	48	1	1
Embase	1/20/2016	1/1/2013 - 1/1/2016	English speaking, adult >18	None	cerebral AND edema OR brain AND edema AND 'cerebrovascular accident' AND surgical AND decompression OR 'suboccipital craniotomy' OR 'suboccipital craniectomy' AND [2013-2016]/py	251	251	3	2

Cerebral edema, impact of age

Table 59. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke Table 60. Randomized Controlled Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	12/24/2016	1/1/2010 - 1/1/2016	RCTs and controlled trials	None	("decompressive craniectomy" [MeSH Terms] OR ("decompressive" [All Fields] AND "craniectomy" [All Fields]) OR "decompressive craniectomy" [All Fields]) OR "decompressive craniectomy" [All Fields]) AND (("Age" [Journal] OR "age" [All Fields] OR "Age (Omaha)" [Journal] OR "age" [All Fields] OR "Adv Genet Eng" [Journal] OR "age" [All Fields] OR "Adv Genet Eng" [Journal] OR "age" [All Fields]) OR ("aged" [MeSH Terms] OR "aged" [MeSH Terms] OR "aged" [All Fields]) AND ("stroke" [MeSH Terms] OR "stroke" [All Fields]) AND ("brain oedema" [All Fields]) OR "brain edema" [All Fields] OR "brain edema" [All Fields]) OR "brain edema" [All Fields]) AND ("Clinical Trial [ptyp] OR Review [ptyp]) AND ("2014/01/01" [PDAT] : "2016/12/31" [PDAT]))	50	50	5	5
		Tabl	o 57 Nonrandomizo	d Studios of Don	Depression ression Screening in Patients with Acut	o Isahamia St	roko		
PubMed	7/10/2017	1/1/2010 - 7/10/2017	English & Humans	None	"depression", "screen", "stroke"	28	28	0	0

Table 59. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke
Table 60. Randomized Controlled Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	1/29/2016	1/1/2010 - 1/1/2017	English speaking, adult >18	None	("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain edema"[All Fields] OR ("cerebral"[All Fields] AND "edema"[All Fields]) OR "cerebral edema"[All Fields]) AND ("hypothermia"[MeSH Terms] OR "hypothermia"[All Fields]) AND ("adrenal cortex hormones"[Pharmacological Action] OR "adrenal cortex hormones"[MeSH Terms] OR ("adrenal"[All Fields] AND "cortex"[All Fields] AND "hormones"[All Fields]) OR "adrenal cortex hormones"[All Fields] OR "corticosteroids"[All Fields])	35	35	1	1

Cerebral edema, decompression timing

Table 59. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke Table 60. Randomized Controlled Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	12/24/2016	1/1/2014- 1/1/2016	English speaking, adult >18	None	(severe[All Fields] AND ("brain oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain edema"[All Fields]) AND (major[All Fields] AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND ("transfer (psychology)"[MeSH Terms] OR ("transfer"[All Fields] AND "(psychology)"[All Fields]) OR "transfer (psychology)"[All Fields]) OR "transfer (psychology)"[All Fields]) OR "transfer (psychology)"[All Fields]) AND (("neurosciences"[All Fields]) AND ("intensive care units"[MeSH Terms] OR ("intensive "[All Fields]) AND "units"[All Fields]) OR "intensive care units"[All Fields] OR ("intensive"[All Fields] AND "care"[All Fields] AND "unit"[All Fields]) OR "intensive care unit"[All Fields]) OR NSU[All Fields] AND ("2014/01/01"[PDAT]: "2016/12/31"[PDAT])	96	96	0	0

Cerebral edema, ventriculostomy, hydrocephalus

Table 59. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke
Table 60. Randomized Controlled Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	12/12/2016	1/2014- 1/2016	English speaking, adult >18	None	("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR	3	3	2	1
Т				es, and/or Regist	al edema, barbiturates ries of Treatment of Cerebral and Cere				oke
PubMed	Table 60. R	1/1/2014- 1/1/2016	English speaking, adult >18	None	eatment of Cerebral and Cerebellar Ec ("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields] OR ("cerebral"[All Fields] AND "edema"[All Fields]) OR "cerebral edema"[All Fields]) AND (("ischemia"[MeSH Terms] OR "ischemia"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("stroke"[All Fields])) AND ("barbiturates"[MeSH Terms] OR "barbiturates"[All Fields]))	dema Followin	g Acute Ischemic	to Infarction	1
Ţ				es, and/or Regist	edema, corticosteroids ries of Treatment of Cerebral and Cere eatment of Cerebral and Cerebellar Ec				oke

("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND	
PubMed 1/29/2016 1/1/2014- 1/1/2016 1/1/2016 Speaking, adult	1
Cerebral edema, cerebellar decompression	
Table 59. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke Table 60. Randomized Controlled Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction	
PubMed 1/24/2016	1
Association of AMIMCC with stroke etiologic classification Table 61. Nonrandomized Trials, Observational Studies, and/or Registries of Acute Multiple Infarcts in Multiple Cerebrovascular Circulations and Stroke Etiologic Classification	

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	5/21/2017 (updated 6/11/2017)	Best match thru 2/28/2000	Acute multiple infarcts in multiple cerebral circulations-association with cardioembolic classification	English only	multiple infarcts in multiple cerebral circulations diffusion	50	50	3	3
PubMed	5/21/2017 (updated 6/11/2017)	thru 4/30/1999	Acute multiple infarcts in multiple cerebral circulations-association with cardioembolic classification	English only	multiple territory AND stroke AND diffusion-weighted	53	53	2	2
Embase	5/21/2017 (updated 6/11/2017)	thru 8/31/2007	Acute multiple infarcts in multiple cerebral circulations-association with cardioembolic classification	English only	multiple AND territory AND ('stroke'/exp OR stroke) AND 'diffusion weighted' AND cardioembolic	14	14	1	1
Tah	le 62 Nonrandor	nizad Trials Oh			etection of AF by long term monitor s of Acute Infarct Topography and Dete		Fibrillation by Lo	ang Term Mon	itorina
PubMed	5/21/2017	thru 10/31/2002	Baseline MRI infarct pattern of acute multiple Infarcts in multiple cerebrovascular circulations (AMIMCC) and subsequent detection of atrial fibrillation by long-term monitoring	English only	stroke AND cardiac monitoring AND baseline MRI	29	29	1	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
Referenced in paper above	5/21/2017	N/A	Baseline MRI infarct pattern of acute multiple Infarcts in multiple cerebrovascular circulations (AMIMCC) and subsequent detection of atrial fibrillation by longterm monitoring	English only	N/A	2	2	2	2
Cited by workgroup member	5/21/2017	N/A	Baseline MRI infarct pattern of acute multiple Infarcts in multiple cerebrovascular circulations (AMIMCC) and subsequent detection of atrial fibrillation by long-term monitoring	English only	N/A	1	1	1	1
Embase	5/21/2017	thru 1/31/1999	MRI infarct pattern of acute multiple Infarcts in multiple cerebrovascular circulations (AMIMCC) and subsequent detection of atrial fibrillation by long-term monitoring	English only	stroke AND cardiac monitoring AND baseline MRI	23	0	0	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
			Tak	Evolocumab and	d secondary stroke prevention ed Controlled Trials of Evolocumab				
PubMed	4/16/2017	thru 4/30/2015	Double-blind RCTS with clinical outcome	English only	evolocumab AND clinical trial AND stroke	3	3	2	1
Embase	4/16/2017	thru 3/31/2013	Double blind RCTS with clinical outcome	English only	evolocumab AND clinical trial AND stroke	19	19	1	0
					r-to-needle treatment time in stroke			•	
					chieving Rapid Door-to-Needle Times				
		1/1/2011-	andomized Studies C Clinical Studies.	omparing Efficac	cy of Multilevel Interventions to Increase	e Intravenous	Alteplase Use	<u> </u>	
PubMed	2/4/2017	2/4/2017	Clinical Studies, Clinical Trials	Non-English	Door to needle time, stroke	192	192	5	3
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	"Door-to-needle" time, stroke	188	188	5	3
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	DTN time, stroke	41	41	0	0
Cochrane Library	2/4/2017	no limit	Trials	Non-English	Door to needle time, stroke, variations	27	27	0	0
Google Scholar	2/4/2017	1/1/2011- 2/4/2017	In-Title Search	Non-English	"door to needle time stroke"	106	106	5	3
			T 7		teplase treatment in stroke				
	т.	oblo O Dondom			d Studies of Hospital Stroke Capabilitie cacy of Multilevel Interventions to Incre		ua Altanlaga I la	•	
	1.				cacy of Multilevel Interventions to Increas			3	
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Quality Improvement, stroke	112	112	4	2
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Community hospitals, stroke, time factors	55	55	5	3
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Community hospitals, stroke, treatment,	26	26	5	3
				Comparing Efficac	participation in QI registry by of Multilevel Interventions to Increas the Impact of Stroke System Quality Im				
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	quality improvement program, stroke	231	231	5	3

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					oke and Teleradiology				
Table 10. Rando	mized Controlled	d I rials of Level	of Agreement Between		and Spoke Radiologists and Hub Neutients Presenting to Telestroke Hospita		erpreting Head (Computed I on	nography Scans of
	Table 11	Randomized (Controlled Trials Con		nous Audio Video Telemedicine to Tele		or Acute Ischemic	: Stroke	
					d/or Registries of Telestroke for Triagin				
			·		[(Telemedicine or Remote				
		1/1/1999-	RCT, Since		Consultation) AND Stroke] OR			_	_
MEDLINE	1/12/2017	3/1/2017	1999, Human,	None	Telestroke; Limited to Humans,	35	35	7	7
			Adults, English		Adults, and Randomized Controlled Trials				
		ı		I	Early mobility		l		
			Table 5		Controlled Trials of Mobility Intervention	1			
PubMed	2/21/2017	1/1/2010- 2/21/2017	RCT	pediatrics - late rehabilitation	(("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("early ambulation"[MeSH Terms] OR ("early"[All Fields] AND	44	12	5	5
					"ambulation"[All Fields]) OR "early ambulation"[All Fields]) AND ("treatment outcome"[MeSH Terms] OR ("treatment"[All Fields] AND "outcome"[All Fields]) OR "treatment outcome"				
					Nutrition				
			Т	able 53. Randon	nized Controlled Trials of Nutrition				
PubMed	2/21/2017	1/1/2010- 4/26/2017	RCT	Pediatrics	(("enteral nutrition"[MeSH Terms] OR ("enteral"[All Fields] AND "nutrition"[All Fields]) OR "enteral nutrition"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND Clinical Trial[ptyp]	18	10	4	4
			T. I. 54 M		Oral care				
					ervational Studies, and/or Registries of ized Controlled Trials of Oral Care	t Oral Hygiene	9		
PubMed	4/26/2017	1/1/2010-	Guidelines and	Pediatrics	oral care methods, stroke, stroke				
		4/26/2017	up to data sources RCT	and late rehabilitation	nursing,	48	7	3	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	4/26/2017	1/1/2010- 4/26/2017	Guidelines and up to date sources - NRCT,	Pediatrics and late rehabilitation	("mouth"[MeSH Terms] OR "mouth"[All Fields] OR "oral"[All Fields]) AND care[All Fields] AND				
			Systematic Reviews, observation, adults >=18		("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("pneumonia"[MeSH Terms] OR "pneumonia"[All Fields])	29	10	7	4
			addits >= 10	Strol	ke, DVT prophylaxis		10	<u> </u>	1 4
		1			rials Comparing Deep Vein Thrombosis				T
PubMed	12/23/2016 (updated 1/20/2017)	1/1/2010- 1/20/2017	RCTs only, English only, adults ≥18		(("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND dvt[All Fields] AND ("prevention and control"[Subheading] OR ("prevention"[All Fields] AND "control"[All Fields]) OR "prevention and control"[All Fields] OR "prophylaxis"[All Fields])) AND ((Clinical Trial[ptyp] OR Randomized Controlled Trial[ptyp]) AND hasabstract[text]) sphagia screening	24 ening	11	11	5
		Т			ervational Studies, and/or Registries of		creening		
PubMed	5/1/2017	2/6/2017	RCT, NRCT, systematic reviews, observation, adults ≥18	Pediatric	(("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND dvt[All Fields] AND ("prevention and control"[Subheading] OR ("prevention"[All Fields] AND "control"[All Fields]) OR "prevention and control"[All Fields] OR "prophylaxis"[All Fields])) AND ((Randomized Controlled Trial[ptyp] OR Clinical Trial[ptyp] OR systematic[sb]) AND ("2010/01/01"[PDAT]: "2017/01/20"[PDAT]) AND "humans"[MeSH Terms])	4	4	4	4