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Abstract

We report on chloroquine, a 4-amino-quinoline, as an effective inhibitor of the replication of the severe acute respiratory syn-

drome coronavirus (SARS-CoV) in vitro. Chloroquine is a clinically approved drug effective against malaria. We tested chloroquine

phosphate for its antiviral potential against SARS-CoV-induced cytopathicity in Vero E6 cell culture. Results indicate that the IC50

of chloroquine for antiviral activity (8.8 ± 1.2 lM) was significantly lower than its cytostatic activity; CC50 (261.3 ± 14.5 lM), yield-

ing a selectivity index of 30. The IC50 of chloroquine for inhibition of SARS-CoV in vitro approximates the plasma concentrations

of chloroquine reached during treatment of acute malaria. Addition of chloroquine to infected cultures could be delayed for up to

5 h postinfection, without an important drop in antiviral activity. Chloroquine, an old antimalarial drug, may be considered for

immediate use in the prevention and treatment of SARS-CoV infections.

� 2004 Elsevier Inc. All rights reserved.
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Severe acute respiratory syndrome (SARS) has re-

cently emerged as a new highly contagious human dis-
ease with a major impact all over the world [1]. The

global SARS epidemic started in the Guangdong Prov-

ince in southern China, where several cases of atypical

pneumonia of unknown etiology were reported at the

end of November 2002. A novel member of the Corona-

viridae family has been identified as the causative agent

of SARS [2–7]. Three other human coronaviruses

(HCoV) OC43, 229E, and the recently characterized
NL63 are important causes of upper respiratory tract ill-

nesses. In late fall and winter they are responsible for

approximately one-third of the common colds.

During the epidemic in 2003, treatment of SARS was

empirical due to the limited understanding of this new

disease. Protease inhibitors (lopinavir/ritonavir) in com-

bination with ribavirin may be of benefit as antiviral
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therapy, when given in the early phase of the illness

[8,9]. The role of interferon and systemic steroids in pre-
venting immune-mediated lung injury requires further

investigation [10,11].

Since the epidemic, a lot of effort has been put into

antiviral research to find compounds effective against

SARS-CoV. Glycyrrhizin (an active component of

liquorice roots), niclosamide (an antihelminthic drug),

nelfinavir (a human immunodeficiency deficiency virus

(HIV) protease inhibitor), and SNAP (a nitric oxide do-
nor) were reported to have an antiviral effect against

SARS-CoV [12–15].

Savarino et al. [16] hypothesized that chloroquine

might be of some use for the clinical management of

SARS. Chloroquine is known as an antimalarial agent

and elicits also antiviral effects against several viruses

including HIV type 1 (HIV-1) [17–19], hepatitis B virus

[20], herpes simplex virus type 1 [21], and HCoV-229E
[22]. The antiviral effects of chloroquine against HIV

type 1 replication are currently being tested in clinical
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trials [16]. Besides a direct antiviral effect, chloroquine is

endowed with immunomodulatory activity, suppressing

the production and release of tumour necrosis factor

and interleukin 6, which mediate the inflammatory com-

plications of several viral diseases [16].

In this study, we evaluate chloroquine for its poten-
tial to protect against SARS-CoV infection in vitro.
Materials and methods

Cell culture and virus. The SARS-CoV Frankfurt 1 strain was

kindly provided by Prof. Dr. H. F. Rabenau from the Johann Wolf-

gang Goethe University, Frankfurt, Germany. Vero E6 cells were

propagated in minimal essential medium (MEM; Gibco, Life Tech-

nologies, Rockville, MD) supplemented with 10% fetal calf serum

(FCS, Integro, Zaandam, The Netherlands), 1% LL-glutamine (Gibco,

Life Technologies, Rockville, MD), and 1.4 % sodium bicarbonate

(Gibco, Life Technologies, Rockville, MD). Virus-infected cells

were maintained at 37 �C in 5% CO2 in MEM supplemented with 2%

FCS.

Compounds. We tested chloroquine phosphate (7-chloro-4-[[4-

(diethylamino)-1-methylbutyl]amino]quinoline phosphate, Alpha

pharma, Braine-l�Alleud, Belgium) and interferon b-1a (Avonex, Bio-

gen) was used as a positive control.

Real-time quantitative RT-PCR. A real-time quantitative RT-PCR

(Taqman) was designed in the putative nsp11 region in the replicase 1B

domain of the SARS-associated coronavirus (SARS-CoV) genome

forward primer (SARS-FP: 5 0-CACCCGCGAAGAAGCTATTC-30),

MGB probe (SARS-TP: FAM 5 0-TGCGTGGATTGGCTT-3 0 NFQ-

MGB), and reverse primer (SARS-RP: 5 0-TTGCATGACAGC

CCTCTACATC-3 0). A 25 ll RT-PCR was carried out using 5 ll of
extracted RNA or standard cRNA, 12.5 ll TaqMan One-Step RT-

PCR Master Mix containing ROX as a passive reference (Applied

Biosystems, Foster City, CA, USA), 900 nM forward and reverse

primers, and 150 nM MGB probe. Amplification and detection were

performed in an ABI PRISM 7700 Sequence Detection System (Ap-

plied Biosystems, Foster City, CA, USA) under the following condi-

tions: an initial reverse transcription at 48 �C for 30 min, followed by

PCR activation at 95 �C for 10 min and 45 cycles of amplification (15 s

at 95 �C and 1 min at 60 �C). During amplification, the ABI PRISM

sequence detector monitored real-time PCR amplification by quanti-

tative analysing fluorescence emissions. The reporter dye (FAM) signal

was measured against the internal reference dye (ROX) signal to

normalize for non-PCR-related fluorescence fluctuations occurring

from well to well. The threshold cycle represented the refraction cycle

number at which a positive amplification was measured, and was set at

10 times the standard deviation of the mean baseline emission calcu-

lated for PCR cycles 3–5.

Construction of cRNA standards. The TaqMan SARS-CoV forward

primer was modified with a T7-promoter sequence at the 5 0-end

(SARS-FPT7 5 0-TAATACGACTCACTATAGGGAGGCACCCGC

GAAGAAGCTATTC- 3 0). PCR products amplified with the modified

primer pairs were quantified spectrophotometrically at 260 nm. Two

hundred nanograms of PCR product was used for in vitro transcrip-

tion (MEGAshortscript T7 kit, Ambion, Austin, TX, USA) performed

at 37 �C for an overnight period in a 20 ll reaction mix containing 2 ll
reaction buffer, 2 ll of each NTP, and 2 ll enzyme mix. The cDNAs

were removed by digesting with 2 U of RNase-free DNase I for 15 min

at 37 �C. The cRNAs were precipitated by adding 3 ll of 3 M NaOAc

and 60 ll of 96% EtOH and a subsequent incubation at �20 �C for 30

min. After 15 min of centrifugation at 13,000 rpm, supernatant was

removed and 500 ll of 70% EtOH was added. After another 5 min

centrifugation at 13,000 rpm, supernatant was removed and the pellet

was dissolved in 200 ll RNase free H2O (Sigma–Aldrich NV, Bornem,
Belgium) and stored at �80 �C. Quantification of cRNAs was per-

formed spectrophotometrically at 260 nm. The measurements of

cRNA concentration were performed in duplicate and then converted

to the molecule number [23].

Antiviral assay. Antiviral activity and cytotoxicity measurements

were based on the viability of cells that had been infected or not in-

fected with 100 CCID50 (50% cell culture infective doses) of the SARS-

CoV in the presence of various concentrations of the test compounds.

Three days after infection, the number of viable cells was quantified by

a tetrazolium-based colorimetric method, in which the reduction of the

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulph-

ophenyl)-2H-tetrazolium (MTS) dye (CellTiter 96 AQueous One

Solution kit, Promega, The Netherlands) by cellular dehydrogenases to

an insoluble coloured formazan was measured in a spectrophotometer

(Multiskan EX, Thermo Labsystems, Belgium) at 492 nm [24,25]. The

selectivity index was determined as the ratio of the concentration of the

compound that reduced cell viability to 50% (CC50 or 50% cytotoxic

concentration) to the concentration of the compound needed to inhibit

the viral cytopathic effect to 50% of the control value (IC50 or 50%

inhibitory concentration). Interferon b is used as a positive control.

Time-of-addition assay. Subconfluent monolayers of Vero E6 cells

in 96-well plates were infected with 100 CCID50 SARS-CoV. After

20 min of adsorption, cell monolayers were washed five times with

MEM. Chloroquine was added at a concentration 12-fold above the

IC50 (8.8 lM) in triplicate, at the time of infection or at different time

points thereafter. Eight hours after infection (a time at which the first

viral cycle has been completed), cell supernatants were collected, viral

RNA was extracted, and the antiviral activity was determined by using

the quantitative RT-PCR described above.

Virus yield assay. After incubation of the virus-infected Vero E6

cells with different concentrations of the test compounds, under the

appropriate conditions, supernatants containing free viruses were

subjected to quantitative RT-PCR. Virus titers were determined on

day 1 and day 3 postinfection.
Results and discussion

In this study we report the in vitro antiviral activity of

chloroquine against SARS-CoV Frankfurt 1 strain

infection. Cytotoxicity in Vero E6 cells was measured

in parallel with the antiviral activity. This experiment,

done in quadruplicate, was repeated three times, and
representative results are shown in Fig. 1.

In the virus yield assay, where viral RNA was quan-

tified one and three days postinfection, no significant

replication was observed after one day when the cells

were treated with 4 lM chloroquine. To inhibit virus

replication by 99% three days postinfection, 16 lM chlo-

roquine was needed (Fig. 2).

To obtain initial insight into the stage in the viral
replication cycle at which chloroquine may exert its

antiviral activity, a time-of-drug-addition assay was

elaborated. Vero E6 cells were infected with 100 CCID50

SARS-CoV. One virus replication cycle takes 5–6 h [26].

We therefore quantitated the effect on viral replication

at 8 h postinfection, i.e., a time point at which progeny

virus in the supernatant is solely derived from the first

replication cycle. The compound proved equally active
when added during adsorption or at 1 h after infection.

This indicates that the virus does likely not interfere



Fig. 1. SARS-CoV-infected Vero E6 cells were incubated for three

days in the presence of 0, 0.8, 4, 20, and 100 lM chloroquine. Data are

mean values ± SE of four replicates. White bars indicate the effect of

chloroquine on viability of cells infected with SARS-CoV. Black bars

show the effect of chloroquine on viability of mock-infected cells. The

concentration of chloroquine that results in 50% inhibition of the viral

cytopathic effect, IC50, is 8.8 ± 1.2 lM. IFN b-1a was used as a positive

control for the antiviral assay and yielded an IC50 of 2550 IU/mL (data

not shown).

Fig. 2. Dose–response of inhibitory effect of chloroquine on the virus

yield. SARS-CoV-infected Vero E6 cells were incubated for one and

three days in the presence of 0, 2, 4, 8, 16, 32, 64, 128, or 256 lM
chloroquine. Cell supernatants were used for viral RNA extraction and

subjected to real-time RT-PCR. cRNA standards were used for

absolute quantification of the genome equivalents of SARS-CoV.

These results are from a single experiment, representative of two

independent experiments.

Fig. 3. Time-of-drug-addition experiments performed using quantita-

tive RT-PCR on viral RNA extracted from the cell supernatant. The

data represent mean values ± SE for three separate experiments. Virus

replication was calculated as percentage of SARS-CoV genome

equivalents comparing treated with untreated infected cells.
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with the early steps of viral replication, i.e., attachment

or penetration. At later time points a gradual loss of the

antiviral activity of chloroquine was noted. (Fig. 3).
The IC50 of chloroquine inhibition of SARS-CoV

replication in Vero E6 cells, 8.8 lM, is below (1000-fold)

the plasma concentrations of chloroquine that are

reached in human plasma, following treatment with
chloroquine (for acute malaria) at a dose of 25 mg/kg

over three days [27]. The dose of chloroquine used for

the treatment of rheumatoid arthritis (3.6 mg/kg) gener-

ates plasma chloroquine concentrations of 1–3 lM,

which is in the same concentration range as the IC50

for inhibition of SARS-CoV [28].

Our results show that chloroquine inhibits the repli-

cation of SARS-CoV in Vero E6 cells. Since immuno-
pathological factors may play a significant role in

SARS-CoV, it will be of interest to further study

whether chloroquine is also effective in terms of modula-

tion of inflammatory responses to SARS-CoV

infections.

Chloroquine is given prophylactically at a dose of

300 mg/week to people travelling to malaria endemic

areas. If SARS re-emerges, chloroquine can be of great
importance as prophylactic medication for people living

in and travelling to the affected area. Chloroquine is

ubiquitously available, of low cost, and easy to adminis-

ter. It may be considered for immediate use in the pre-

vention and treatment of SARS-CoV infections.
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