IN VITRO DIFFERENTIATION OF HUMAN TH17 CELLS

Eszter Baricza¹, Barbara Molnár-Érsek¹, Edit Buzás¹, György Nagy^{1,2}

¹Department of Genetics-, Cell- and Immunbiology, Semmelweis University, Budapest ²Department of Rheumatology, Semmelweis University, Budapest

Background: Th17 cells represent a subset of T helper lymphocytes that produce several inflammatory cytokines, including interleukin-17A, -17F, -21, -22, and tumor necrosis factor. Increased Th17 cell differentiation and IL-17 production have been observed in rheumatoid arthritis (RA) and in several other autoimmune diseases. IL-17 contributes to development of inflammation and promotes osteoclast differentiation in RA. We have studied the differentiation of Th17 cells.

Methods: CD4 positive T cells were separated by magnetic method from peripheral blood mononuclear cells (PBMC) of healthy volunteers. The cells were treated for 5-10 days with anti-CD3 and anti-CD28 antibodies and with TGF $_{\beta}$ (2,5ng/ml), IL-6 (25ng/ml) and IL-1 (10ng/ml) cytokines, and with anti-IL-4 (10µg/ml) and anti-IFN $_{\gamma}$ (10µg/ml) blocking antibodies. The IL-17 production was measured by ELISPOT and ELISA, the RORc expression was measured by real-time PCR and by western blot methods, cell viability was monitored by Trypan blue staining and by Annexin V binding.

Results: Anti-CD3/CD28 treatment increased the IL-17 production, but did not alter the RORc expression. The anti-CD3/CD28, IL-1, IL-6 and TGF_{β} induced RORc expression was further increased by the anti-IL-4 and anti-IFN γ antibody treatment, without affecting cell viability.

Conclusion: Our data suggests that IL-4 and IFN γ blockade promote the T-cell activation and cytokine treatment induced Th17 cell differentiation.